Localization is one of the key components in the operation of self-driving cars. Owing to the noisy global positioning system (GPS) signal and multipath routing in urban environments, a novel, practical approach is needed. In this study, a sensor fusion approach for self-driving cars was developed. To localize the vehicle position, we propose a particle-aided unscented Kalman filter (PAUKF) algorithm. The unscented Kalman filter updates the vehicle state, which includes the vehicle motion model and non-Gaussian noise affection. The particle filter provides additional updated position measurement information based on an onboard sensor and a high definition (HD) map. The simulations showed that our method achieves better precision and comparable stability in localization performance compared to previous approaches.
The location of the vehicle is a basic parameter for self-driving cars. The key problem of localization is the noise of the sensors. In previous research, we proposed a particle-aided unscented Kalman filter (PAUKF) to handle the localization problem in non-Gaussian noise environments. However, the previous basic PAUKF only considers the infrastructures in two dimensions (2D). This previous PAUKF 2D limitation rendered it inoperable in the real world, which is full of three-dimensional (3D) features. In this paper, we have extended the previous basic PAUKF’s particle weighting process based on the multivariable normal distribution for handling 3D features. The extended PAUKF also raises the feasibility of fusing multisource perception data into the PAUKF framework. The simulation results show that the extended PAUKF has better real-world applicability than the previous basic PAUKF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.