Nemonoxacin, a novel nonfluorinated quinolone, exhibits potent in vitro and in vivo activities against community-acquired pneumonia (CAP) pathogens, including multidrug-resistant Streptococcus pneumoniae. Patients with mild to moderate CAP (n ؍ 265) were randomized to receive oral nemonoxacin (750 mg or 500 mg) or levofloxacin (500 mg) once daily for 7 days. Clinical responses were determined at the test-of-cure visit in intent-to-treat (ITT), clinical per protocol (PPc), evaluable-ITT, and evaluable-PPc populations. The clinical cure rates for 750 mg nemonoxacin, 500 mg nemonoxacin, and levofloxacin were 89.9%, 87.0%, and 91.1%, respectively, in the evaluable-ITT population; 91.7%, 87.7%, and 90.3%, respectively, in the evaluable-PPc population; 82.6%, 75.3%, and 80.0%, respectively, in the ITT population; and 83.5%, 78.0%, and 82.3%, respectively, in the PPc population. Noninferiority to levofloxacin was demonstrated in both the 750-mg and 500-mg nemonoxacin groups for the evaluable-ITT and evaluable-PPc populations, and also in the 750 mg nemonoxacin group for the ITT and PPc populations. Overall bacteriological success rates were high for all treatment groups in the evaluable-bacteriological ITT population (90.2% in the 750 mg nemonoxacin group, 84.8% in the 500 mg nemonoxacin group, and 92.0% in the levofloxacin group). All three treatments were well tolerated, and no drug-related serious adverse events were observed. Overall, oral nemonoxacin (both 750 mg and 500 mg) administered for 7 days resulted in high clinical and bacteriological success rates in CAP patients. Further, good tolerability and excellent activity against common causative pathogens were demonstrated. Nemonoxacin (750 mg and 500 mg) once daily is as effective and safe as levofloxacin (500 mg) once daily for the treatment of CAP.
The current paper describes the age, period and cohort effects on breast cancer mortality in Taiwan. Female breast cancer mortality data were collected from the Taiwan death registries for 1971–2010. The annual percentage changes, age- standardised mortality rates (ASMR) and age–period–cohort model were calculated. The mortality rates increased with advancing age groups when fixing the period. The percentage change in the breast cancer mortality rate increased from 54.79% at aged 20–44 years, to 149.78% in those aged 45–64 years (between 1971–75 and 2006–10). The mortality rates in the 45–64 age group increased steadily from 1971 to 1975 and 2006–10. The 1951 birth cohorts (actual birth cohort; 1947–55) showed peak mortalities in both the 50–54 and 45–49 age groups. We found that the 1951 birth cohorts had the greatest mortality risk from breast cancer. This might be attributed to the DDT that was used in large amounts to prevent deaths from malaria in Taiwan. However, future researches require DDT data to evaluate the association between breast cancer and DDT use.
Insulin-like growth factors (IGFs) are mediators of growth hormones; they have an influence on cell proliferation and differentiation. In addition, IGF-binding protein (IGFBP)-3 could suppress the mitogenic action of IGFs. Interestingly, tea polyphenols could substantially reduce IGF1 and increase IGFBP3. In this study, we evaluated the effects of smoking, green tea consumption, as well as IGF1, IGF2, and IGFBP3 polymorphisms, on lung cancer risk. Questionnaires were administered to obtain the subjects' characteristics, including smoking habits and green tea consumption from 170 primary lung cancer cases and 340 healthy controls. Genotypes for IGF1, IGF2, and IGFBP3 were identified by polymerase chain reaction. Lung cancer cases had a higher proportion of smoking, green tea consumption of less than one cup per day, exposure to cooking fumes, and family history of lung cancer than controls. After adjusting the confounding effect, an elevated risk was observed in smokers who never drank green tea, as compared to smokers who drank green tea more than one cup per day (odds ratio (OR) = 13.16, 95% confidence interval (CI) = 2.96–58.51). Interaction between smoking and green tea consumption on lung cancer risk was also observed. Among green tea drinkers who drank more than one cup per day, IGF1 (CA)19/(CA)19 and (CA)19/X genotypes carriers had a significantly reduced risk of lung cancer (OR = 0.06, 95% CI = 0.01–0.44) compared with IGF1 X/X carriers. Smoking-induced pulmonary carcinogenesis could be modulated by green tea consumption and their growth factor environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.