By fine-tuning the crystal nucleation and growth process, a low-temperature-gradient crystallization method is developed to fabricate high-quality perovskite CH NH PbBr single crystals with high carrier mobility of 81 ± 5 cm V s (>3 times larger than their thin film counterpart), long carrier lifetime of 899 ± 127 ns (>5 times larger than their thin film counterpart), and ultralow trap state density of 6.2 ± 2.7 × 10 cm (even four orders of magnitude lower than that of single-crystalline silicon wafers). In fact, they are better than perovskite single crystals reported in prior work: their application in photosensors gives superior detectivity as high as 6 × 10 Jones, ≈10-100 times better than commercial sensors made of silicon and InGaAs. Meanwhile, the response speed is as fast as 40 µs, ≈3 orders of magnitude faster than their thin film devices. A large-area (≈1300 mm ) imaging assembly composed of a 729-pixel sensor array is further designed and constructed, showing excellent imaging capability thanks to its superior quality and uniformity. This opens a new possibility to use the high-quality perovskite single-crystal-based devices for more advanced imaging sensors.
Multiferroic heterostructures of Fe3O4/PZT (lead zirconium titanate), Fe3O4/PMN‐PT (lead magnesium niobate‐lead titanate) and Fe3O4/PZN‐PT (lead zinc niobate‐lead titanate) are prepared by spin‐spray depositing Fe3O4 ferrite film on ferroelectric PZT, PMN‐PT and PZN‐PT substrates at a low temperature of 90 °C. Strong magnetoelectric coupling (ME) and giant microwave tunability are demonstrated by a electrostatic field induced magnetic anisotropic field change in these heterostructures. A high electrostatically tunable ferromagnetic resonance (FMR) field shift up to 600 Oe, corresponding to a large microwave ME coefficient of 67 Oe cm kV−1, is observed in Fe3O4/PMN‐PT heterostructures. A record‐high electrostatically tunable FMR field range of 860 Oe with a linewidth of 330–380 Oe is demonstrated in Fe3O4/PZN‐PT heterostructure, corresponding to a ME coefficient of 108 Oe cm kV−1. Static ME interaction is also investigated and a maximum electric field induced squareness ratio change of 40% is observed in Fe3O4/PZN‐PT. In addition, a new concept that the external magnetic orientation and the electric field cooperate to determine microwave magnetic tunability is brought forth to significantly enhance the microwave tunable range up to 1000 Oe. These low temperature synthesized multiferroic heterostructures exhibiting giant electrostatically induced tunable magnetic resonance field at microwave frequencies provide great opportunities for electrostatically tunable microwave multiferroic devices.
A critical challenge in realizing magnetoelectrics based on reconfigurable microwave devices, which is the ability to switch between distinct ferromagnetic resonances (FMR) in a stable, reversible and energy efficient manner, has been addressed. In particular, a voltage-impulse-induced two-step ferroelastic switching pathway can be used to in situ manipulate the magnetic anisotropy and enable non-volatile FMR tuning in FeCoB/PMN-PT (011) multiferroic heterostructures.
A novel multiferroic heterostructure consisting of a FeGaB thin film and a PZN‐PT single crystal slab shows giant tunability of the ferromagnetic resonance (FMR) frequency of the heterostructure by electric field (see figure). The overall electric‐field‐induced FMR frequency change of 5.82 GHz is the largest reported so far. FeGaB/PZN‐PT multiferroic heterostructures are promising candidates for wide‐band electrostatically tunable microwave devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.