Dynamic random-access memory (DRAM) is the building block of modern main memory systems. DRAM cells must be periodically refreshed to prevent loss of data. These refresh operations waste energy and degrade system performance by interfering with memory accesses. The negative effects of DRAM refresh increase as DRAM device capacity increases. Existing DRAM devices refresh all cells at a rate determined by the leakiest cell in the device. However, most DRAM cells can retain data for significantly longer. Therefore, many of these refreshes are unnecessary.In this paper, we propose RAIDR (Retention-Aware Intelligent DRAM Refresh), a low-cost mechanism that can identify and skip unnecessary refreshes using knowledge of cell retention times. Our key idea is to group DRAM rows into retention time bins and apply a different refresh rate to each bin. As a result, rows containing leaky cells are refreshed as frequently as normal, while most rows are refreshed less frequently. RAIDR uses Bloom filters to efficiently implement retention time bins. RAIDR requires no modification to DRAM and minimal modification to the memory controller. In an 8-core system with 32 GB DRAM, RAIDR achieves a 74.6% refresh reduction, an average DRAM power reduction of 16.1%, and an average system performance improvement of 8.6% over existing systems, at a modest storage overhead of 1.25 KB in the memory controller. RAIDR's benefits are robust to variation in DRAM system configuration, and increase as memory capacity increases.
This paper attempts to provide some new understanding of the mechanical as well as thermal effects of the Tibetan Plateau (TP) on the circulation and climate in Asia through diagnosis and numerical experiments. The air column over the TP descends in winter and ascends in summer and regulates the surface Asian monsoon flow. Sensible heating on the sloping lateral surfaces appears from the authors’ experiments to be the major driving source. The retarding and deflecting effects of the TP in winter generate an asymmetric dipole zonal-deviation circulation, with a large anticyclone gyre to the north and a cyclonic gyre to the south. Such a dipole deviation circulation enhances the cold outbreaks from the north over East Asia, results in a dry climate in south Asia and a moist climate over the Indochina peninsula and south China, and forms the persistent rainfall in early spring (PRES) in south China. In summer the TP heating generates a cyclonic spiral zonal-deviation circulation in the lower troposphere, which converges toward and rises over the TP. It is shown that because the TP is located east of the Eurasian continent, in summertime the meridional winds and vertical motions forced by the Eurasian continental-scale heating and the TP local heating are in phase over the eastern and central parts of the continent. The monsoon in East Asia and the dry climate in middle Asia are therefore intensified.
This paper presents a method for evaluating multiple feature spaces while tracking, and for adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for tracking the object. We develop an on-line feature ranking mechanism based on the two-class variance ratio measure, applied to log likelihood values computed from empirical distributions of object and background pixels with respect to a given feature. This feature ranking mechanism is embedded in a tracking system that adaptively selects the top-ranked discriminative features for tracking. Examples are presented to illustrate how the method adapts to changing appearances of both tracked object and scene background.
Photoresponsive nanoporous membranes, composed of monosized pores modified with azobenzene ligands, were prepared on an ITO working electrode using an evaporation-induced self-assembly procedure. They exhibited the size-selective photoregulated mass transport of two ferrocene-based molecular probes through the membrane to the electrode surface as determined using a chronoamperometry technique. The measured oxidative current increased and decreased in response to alternating UV and visible light exposure correlating strongly with the photoisomerization state of the azobenzene ligands. This indicates that the optically switchable conformation (trans or cis) of azobenzene ligands controls the effective pore size and, correspondingly, transport behavior on the nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.