The function of Tic40 during chloroplast protein import was investigated. Tic40 is an inner envelope membrane protein with a large hydrophilic domain located in the stroma. Arabidopsis null mutants of the atTic40 gene were very pale green and grew slowly but were not seedling lethal. Isolated mutant chloroplasts imported precursor proteins at a lower rate than wild-type chloroplasts. Mutant chloroplasts were normal in allowing binding of precursor proteins. However, during subsequent translocation across the inner membrane, fewer precursors were translocated and more precursors were released from the mutant chloroplasts. Cross-linking experiments demonstrated that Tic40 was part of the translocon complex and functioned at the same stage of import as Tic110 and Hsp93, a member of the Hsp100 family of molecular chaperones. Tertiary structure prediction and immunological studies indicated that the C-terminal portion of Tic40 contains a TPR domain followed by a domain with sequence similarity to co-chaperones Sti1p/Hop and Hip. We propose that Tic40 functions as a cochaperone in the stromal chaperone complex that facilitates protein translocation across the inner membrane.
The human i and I antigens are characterized as linear and branched repeats of N-acetyllactosamine, respectively. Conversion of the i to the I structure requires I-branching beta-1,6-N-acetylglucosaminyltransferase activity. It has been noted that the null phenotype of I, the adult i phenotype, is associated with congenital cataracts in Asians. Previously, the identification of molecular changes in the IGnT gene, associated with the adult i phenotype, has been reported. In the present study, we demonstrate that the human I locus expresses 3 IGnT forms, designated IGnTA, IGnTB, and IGnTC, which have different exon 1, but identical exons 2 and 3, coding regions. The molecular genetics proposed for the I locus offer a new perspective on the formation and expression of the I antigen in different cells and provide insight into the questions derived from investigation of the adult i phenotype. Molecular genetic analyses of the I loci of the 2 adult i groups, with and without congenital cataracts, were performed, and enzyme function assays and expression patterns for the 3 IGnT transcripts in reticulocytes and lens-epithelium cells were analyzed. The results suggest a molecular genetic mechanism that may explain the partial association of the adult i phenotype with congenital cataracts and indicate that a defect in the I locus may lead directly to the development of congenital cataracts. The results also suggest that the human blood group I gene should be reassigned to the IGnTC form, not the IGnTB form, as described previously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.