Preparing transmembrane protein in controllable lipid bilayers is essential for unravelling the coupling of the environments and its dynamic functions. Monomerized bacteriorhodopsin (mbR) embedded in covalently circularized nanodiscs was prepared with dimyristoylphosphatidylglycerol (DMPG) lipid and circular membrane scaffold proteins of two different sizes, cE3D1 and cΔH5, respectively. The retinal photoisomerization kinetics and thermodynamic photocycle were examined by femtosecond and nanosecond transient absorption, respectively, covering the time scale from femtoseconds to hundreds of milliseconds. The kinetics of the retinal isomerization and proton migration from the protonated Schiff base to Asp-85 were not significantly different for monomeric bR solubilized in Triton X-100 or embedded in circularized nanodiscs. This can be ascribed to the local tertiary structures at the retinal pocket vicinity being similar among monomeric bR in various membrane mimicking environments. However, the aforementioned processes are intrinsically different for trimeric bR in purple membrane (PM) and delipidated PM. The reprotonation of the deprotonated Schiff base from Asp-96 in association with the decay of intermediate M, which involved wide-ranged structural alteration, manifested a difference in terms of the oligomeric statuses, as well as a slight dependence on the size of the nanodisc. In summary, bR oligomeric statuses, rather than the environmental factors, such as membrane mimicking systems and nanodisc size, play a significant role in bR photocycle associated with short-range processes, such as the retinal isomerization and deprotonation of protonated Schiff base at the retinal pocket. On the other hand, the environmental factors, such as the types of membrane mimicking systems and the size of nanodiscs, affect those dynamic processes involving wider structural alterations during the photocycle.
Excited‐state relaxation of linear merocyanine dyes in solution is investigated using time‐resolved spectroscopy techniques and quantum chemical calculations. The merocyanine L‐Mero4 and phenyl‐substituted P‐L‐Mero4 have a S‐trans and S‐cis structure, respectively, consisting of indole moiety as the donor, indandione as the acceptor, and the tetramethine as the bridge. The time‐correlated single‐photon counting (TCSPC) picosecond measurements after excitation at wavelength 515 nm to the ππ* state yield emission curves with a short component τ1 in the range of 27–160 ps and a second component τ2 of 200–780 ps for L‐Mero4. In P‐L‐Mero4, τ1 lies in the range of 18–150 ps and τ2 220–520 ps. The subfemtosecond transient absorption measurements yield a short component around 0.4–1.4 ps, and the second/third components are similar to those in the TCPSC measurements. The analysis of the experimental data demonstrates that the ground state recovery exhibits a biexponential rise and rapidly indicates that the conversion back to the electronic ground state provides a fast, nonradiative pathway. Quantum chemical calculations on the electronic structures and their dependence on the molecular confirmation are performed. We identify the excited states and the relaxation path along the twist of the center double bonds in tetramethine that might be the nonradiative pathway. The C=C double bond is weakened in the ππ* state. The phenyl substitution in the conjugated double bond weakens this C=C bond, lowers the isomerization barrier, increases the nonradiative rate, and reduces the emission quantum yield. In polar solvents, the energy of the perpendicular conformer along the trans–cis isomerization path is increased to achieve less coupling to the ground state surface. Because of the small barrier to the trans form, these two conformers establish an equilibrium condition. The trans form, which lies at a lower energy, gains more population and thus has a higher emission yield.
Covalently circularized nanodiscs using circular membrane scaffold protein (MSP) serve as a suitable membrane mimetic for transmembrane proteins by providing stability and tunability in lipid compositions, providing controllable biological environments for targeted proteins. In this work, monomeric bacteriorhodopsin (mbR) was embedded in lipid nanodiscs of different lipid compositions using negatively charged lipid dioleoyl phosphatidylglycerol (DOPG) and the zwitterion lipid dioleoyl phosphatidylcholine (DOPC), and the events associated with the retinal Schiff base, including the thermal isomerization during the dark adaptation, photoisomerization, and deprotonation, were investigated. The retinal thermal isomerization from all-trans, 15-anti to the 13-cis, 15-syn configuration during the dark adaptation was accelerated in the DOPG bilayer, whereas the processes in the DOPC bilayer and in Triton X-100 micelles were similar. This observation indicated that the negatively charged lipid reduced the barrier for retinal thermal isomerization at C13C14C15N in the ground electronic state. Furthermore, the broader absorption contour of mbR in the DOPC nanodisc probably indicated various retinal isomers in the light-adapted state, consistent with the observed nontwo-state dark adaptation kinetics. Moreover, the kinetics of the photoisomerization of the retinal was slightly decelerated upon increasing the content of DOPC. However, the cascading deprotonation of the protonated Schiff base is not dependent on the types of the surrounding lipids in the nanodiscs. In summary, our research deepens the understanding of the coupling between lipid membrane and the photochemistry of bR retinal Schiff base. Combined with the results of our previous works (Lee, T.-Y.; Yeh, V.; Chuang, J.; Chan, J. C. C.; Chu, L.-K.; Yu, T.-Y. Biophys. J. 2015, 109, 1899–1906; Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.; Yu, T.-Y.; Chu, L.-K. J. Phys. Chem. B 2019, 123, 2032–2039), these outcomes extend our understanding of the control of photochemistry and biophysical events for other photosynthetic proteins via altering the lipid environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.