Although plasma corticosterone is considered the main glucocorticoid involved in regulation of stress responses in rodents, the presence of plasma cortisol and whether its level can be used as an indicator for rodent activation of stress remain to be determined. In this study, effects of estrous cycle stage, circadian rhythm, and acute and chronic (repeated or unpredictable) stressors of various severities on dynamics and correlation of serum cortisol and corticosterone were examined in mice. A strong (r = 0.6–0.85) correlation between serum cortisol and corticosterone was observed throughout the estrous cycle, all day long, and during acute or repeated restraints, chronic unpredictable stress and acute forced swimming or heat stress. Both hormones increased to the highest level on day 1 of repeated-restraint or unpredictable stresses, but after that, whereas the concentration of cortisol did not change, that of corticosterone showed different dynamics. Thus, whereas corticosterone declined dramatically during repeated restraints, it remained at the high level during unpredictable stress. During forced swimming or heat stress, whereas cortisol increased to the highest level within 3 min., corticosterone did not reach maximum until 40 min. of stress. Analysis with HPLC and HPLC-MS further confirmed the presence of cortisol in mouse serum. Taken together, results (i) confirmed the presence of cortisol in mouse serum and (ii) suggested that mouse serum cortisol and corticosterone are closely correlated in dynamics under different physiological or stressful conditions, but, whereas corticosterone was a more adaptation-related biomarker than cortisol during chronic stress, cortisol was a quicker responder than corticosterone during severe acute stress.
It is well known that during mammalian ovarian follicular development, the majority of follicles undergo atresia at various stages of their development. However, the mechanisms controlling this selection process remain unknown. In this study, we investigated apoptosis in granulosa cells during goat follicular atresia by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The changes in the levels of steroids, insulin-like growth factors (IGFs) and IGF receptors were studied by radioimmunoassay (RIA) and semi-quantitative reverse transcription-PCR. We found that the percentage of apoptotic granulosa cells in the atretic (A) follicles was significantly higher than that in the slightly atretic (SA) and healthy (H) follicles. The level of estradiol and the ratio of estradiol to progesterone in H follicles were significantly higher than those in A follicles. On the other hand, the level of progesterone was not significantly different among these follicle types. We also found that the level of IGF-I in H follicles was higher than in SA and A follicles, whereas the amount of IGF-II did not vary significantly. The expression of IGF receptor also decreased in A follicles as compared to that in H and SA follicles. These results suggested that estradiol and IGF-I might be involved in controlling apoptosis in granulosa cells during follicular atresia.
Protein tyrosine kinases (PTKs) play a critical role in the manifestation of cancer cell properties, and respective signaling mechanisms have been studied extensively on immortalized tumor cells. To characterize and analyze commonly used cancer cell lines with regard to variations in the primary structure of all expressed PTKs, we conducted a cDNA-based sequence analysis of the entire tyrosine kinase transcriptome of 254 established tumor cell lines. The profiles of cell line intrinsic PTK transcript alterations and the evaluation of 155 identified polymorphisms and 234 somatic mutations are made available in a database designated ''Tykiva'' (tyrosine ki nome variant). Tissue distribution analysis and/or the localization within defined protein domains indicate functional relevance of several genetic alterations. The cysteine replacement of the highly conserved Y367 residue in fibroblast growth factor receptor 4 or the Q26X nonsense mutation in the tumor-suppressor kinase CSK are examples, and may contribute to cell line-specific signaling characteristics and tumor progression. Moreover, known variants, such as epidermal growth factor receptor G719S, that were shown to mediate anticancer drug sensitivity could be detected in other than the previously reported tumor types. Our data therefore provide extensive system information for the design and interpretation of cell line-based cancer research, and may stimulate further investigations into broader clinical applications of current cancer therapeutics.
Purpose: As a cyclin-independent atypical CDK, the role of CDK5 in regulating cell proliferation in gastric cancer remains unknown.Experimental Design: Expression of CDK5 in gastric tumor and paired adjacent noncancerous tissues from 437 patients was measured by Western blotting, immunohistochemistry, and realtime PCR. The subcellular translocation of CDK5 was monitored during gastric cancer cell proliferation. The role of nuclear CDK5 in gastric cancer tumorigenic proliferation and ex vivo xenografts was explored. Furthermore, by screening for compounds in the PubChem database that disrupt CDK5 association with its nuclear export facilitator, we identified a small molecular (NS-0011) that inhibits gastric cancer cell growth.Results: CDK5 level was significantly decreased in the majority of gastric tumor tissues, and the reduction of CDK5 correlated with the severity of gastric cancer based on tumor and lymph node metastasis and patient 5-year fatality rate. Nuclear localization of CDK5 was found to be significantly decreased in tumor tissues and gastric cancer cell lines, whereas exogenously expression of nucleus-targeted CDK5 inhibited the proliferation and xenograft implantation of gastric cancer cells. Treatment with the small molecule NS-0011, which increases CDK5 accumulation in the nucleus, suppressed both cancer cell proliferation and xenograft tumorigenesis.Conclusions: Our results suggest that low CDK5 expression is associated with poor overall survival in patients with gastric cancer, and nuclear accumulation of CDK5 inhibits the proliferation and tumorigenicity of human gastric cancer cells.
A common feature in the configuration of germinal vesicle (GV) chromatin in most species is that diffuse chromatin condenses into a perinucleolar ring during follicular growth; however, no such ring was observed in goat oocytes. Reports on whether bovine GV chromatin condenses into a perinucleolar ring are controversial. Besides, it is not known whether the perinucleolar ring in an oocyte represents a step toward final maturation or atresia. Changes in GV chromatin configurations during growth and maturation of bovine oocytes were studied using a new method that allows a clearer visualization of both the nucleolus and the chromatin after Hoechst and chromomycin A(3) staining. On the basis of the degree of condensation and distribution, the GV chromatin of bovine oocytes were classified into five configurations: NSN with diffuse chromatin in the whole nuclear area, N with condensed netlike chromatin, C with clumped chromatin, SN with clumped chromatin surrounding the nucleoli, and F with floccular chromatin near the nucleoli and near the nuclear envelope. Most of the oocytes were at the NSN stage in the <1.4-mm follicles, but the NSN pattern disappeared completely in follicles larger than 1.5mm. The SN pattern began to emerge in 1.5-mm follicles, and the number of SN oocytes increased while the number of oocytes with N and C configurations decreased with follicular growth. During maturation in vivo, while the number of N, C, and SN oocytes decreased, that of the F oocytes increased and reached maximum at 51h post prostaglandin injection. After that, the number of F oocytes decreased significantly because of germinal vesicle breakdown (GVBD). During maturation in vitro, GV chromatin configurations changed in a similar manner as during maturation in vivo. Fewer oocytes were at N, C, and SN stages, but more were at F and GVBD stages in the atretic than in the healthy follicles. Serum starvation slowed the F-GVBD transition of the in vitro maturing oocytes. More oocytes were of the SN or C configuration when ovaries were transported at 45-40 degrees C than at 35-30 degrees C. Most of the heated oocytes were blocked at the SN stage during in vitro maturation. It is concluded that (i) bovine GV chromatin condenses into a perinucleolar ring during follicular growth; (ii) bovine oocytes were synchronized at the F stage before GVBD; (iii) oocyte GV chromatin configurations were affected by serum starvation, high temperature, and follicular atresia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.