We investigate the spectral and timing properties of the millihertz quasiperiodic oscillations (mHz QPOs) in neutron-star low-mass X-ray binary 4U 1636-53 using XMM-Newton and Rossi X-ray Timing Explorer (RXTE) observations. The mHz QPOs in the XMM-Newton/RXTE observations show significant frequency variation and disappear right before type I X-ray bursts.We find no significant correlation between the mHz QPO frequency and the temperature of the neutron-star surface, which is different from theoretical predictions. For the first time we observed the full lifetime of a mHz QPO lasting 19 ks. Besides, we also measure a frequency drift timescale ∼15 ks, we speculate that this is the cooling timescale of a layer deeper than the burning depth, possibly heated by the previous burst. Moreover, the analysis of all X-ray bursts in this source shows that all type I X-ray bursts associated with the mHz QPOs are short, bright and energetic, suggesting a potential connection between mHz QPOs and He-rich X-ray bursts.
We used six simultaneous XMM-Newton and Rossi X-ray Timing Explorer plus five Suzaku observations to study the continuum spectrum and the iron emission line in the neutron-star low-mass X-ray binary 4U 1636−53. We modelled the spectra with two thermal components (representing the accretion disc and boundary layer), a Comptonised component (representing a hot corona), and either a Gaussian or a relativistic line component to model an iron emission line at ∼ 6.5 keV. For the relativistic line component we used either the diskline, laor or kyrline model, the latter for three different values of the spin parameter. The fitting results for the continuum are consistent with the standard truncated disc scenario. We also find that the flux and equivalent width of the iron line first increase and then decrease as the flux of the Comptonised component increases. This could be explained either by changes in the ionisation state of the accretion disc where the line is produced by reflection, or by light bending of the emission from the Comptonised component if the height at which this component is produced changes with mass accretion rate.
We detected millihertz quasi-periodic oscillations (QPOs) in an XMM-Newton observation of the neutron-star low-mass X-ray binary 4U 1636−53. These QPOs have been interpreted as marginally-stable burning on the neutron-star surface. At the beginning of the observation the QPO was at around 8 mHz, together with a possible second harmonic. About 12 ks into the observation a type I X-ray burst occurred and the QPO disappeared; the QPO reappeared ∼ 25 ks after the burst and it was present until the end of the observation. We divided the observation into four segments to study the evolution of the spectral properties of the source during intervals with and without mHz QPO. We find that the temperature of the neutron-star surface increases from the QPO segment to the non-QPO segment, and vice versa. We also find a strong correlation between the frequency of the mHz QPO and the temperature of a blackbody component in the energy spectrum representing the temperature of neutron-star surface. Our results are consistent with previous results that the frequency of the mHz QPO depends on the variation of the heat flux from the neutron star crust, and therefore supports the suggestion that the observed QPO frequency drifts could be caused by the cooling of deeper layers.
We report the discovery of millihertz quasi-periodic oscillations (mHz QPOs) from the bursting, high-inclination atoll neutron-star low-mass X-ray binary (NS LMXB) EXO 0748-676 with the Rossi X-ray Time Explorer (RXTE). This class of QPO, originally discovered in three NS LMXBs, has been interpreted as a consequence of a special mode of nuclear burning on the NS surface. Using all the RXTE archival observations of the source, we detected significant (> 3σ) mHz QPOs in 11 observations. The frequency of the oscillations was between ∼ 5 and ∼ 13 mHz. We also found a decrease of the QPO frequency with time in two occasions; in one of these the oscillations disappeared with the onset of an X-ray burst, similar to what was reported in other sources. Our analysis of the X-ray colours revealed that EXO 0748-676 was in a soft spectral state when it exhibited the QPOs. This makes EXO 0748-676 the sixth source with mHz oscillations associated to marginally stable burning, and the second one that shows a systematic frequency drift. Our results suggest that the mechanism that produces the drift might always be present if the mHz QPOs are observed in the so-called intermediate state.
We investigated the convexity of all type I X-ray bursts with millihertz quasi-periodic oscillations (mHz QPOs) in 4U 1636-53 using archival observations with the Rossi X-ray Timing Explorer. We found that, at a 3.5σ confidence level, in all 39 cases in which the mHz QPOs disappeared at the time of an X-ray burst, the convexity of the burst is positive. The convexity measures the shape of the rising part of the burst light curve and, according to recent models, it is related to the ignition site of bursts on the neutronstar surface. This finding suggests that in 4U 1636−53 these 39 bursts and the marginally-stable nuclear burning process responsible for the mHz QPOs take place at the neutron-star equator. This scenario could explain the inconsistency between the high accretion rate required for triggering mHz QPOs in theoretical models and the relatively low accretion rate derived from observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.