Low‐temperature fuel cells (LTFCs) are considered to be one of the most promising power sources for widespread application in sustainable and renewable energy conversion technologies. Although remarkable advances have been made in the mass activity of catalysts, mass transport impedance needs to be urgently addressed at a well‐designed membrane electrode assembly (MEA) scale. Increasing the loading of electrocatalysts is conducive to prepare thinner and more efficient MEAs owing to the resulting enhanced reactant permeability, better proton diffusion, and lower electrical resistance. Herein, recent progress in high‐loading (≥40 wt.%) Pt nanoparticle catalysts (NPCs) and high‐loading (≥2 wt.%) single‐atom catalysts (SACs) for LTFC applications are reviewed. A summary of various synthetic approaches and support materials for high‐loading Pt NPCs and SACs is systematically presented. The influences of high surface area and appropriate surface functionalization for Pt NPCs, as well as coordination environment, spatial confinement effect, and strong metal‐support interactions (SMSI) for SACs are highlighted. Additionally, this review presents some ideas regarding challenges and future opportunities of high‐loading catalysts in the application of LTFCs.
Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm −2 , and when the laser fluence increases to 250 J/cm 2 , the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm 2 , we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.