Glycine was adsorbed on the surface of a well-defined silica from aqueous solutions of variable concentrations and pHs. The adsorbed molecules were characterized using middle-IR and UV-vis-NIR spectroscopies. Except at the lowest pH (2.0), they were predominantly present on the surface as zwitterions. Two successive deposition mechanisms were evidenced with increasing glycine concentration. At low concentrations, glycine is specifically adsorbed on silica surface sites, probably through its NH3+ moiety. The pH dependence suggests that these sites may be silanolate groups (approximately equal to Si-O-). At higher concentrations, specific adsorption sites are saturated and surface-induced precipitation of beta-glycine is observed. The thermal reactivity of adsorbed/deposited glycine was then investigated by thermogravimetric analysis, in situ diffuse reflectance IR spectroscopy, and thermoprogrammed desorption coupled with mass spectrometry. Adsorbed glycine molecules react to form peptide bonds at a temperature considerably lower than that for bulk crystalline alpha-glycine. The main reaction product is the cyclic dimer diketopiperazine, with no evidence of the linear dimer. The activation mechanism is not diffusionally limited; the formation of "surface acyls", previously proposed for related systems, has not been evidenced here. These findings are of relevance for the evaluation of prebiotic peptide synthesis scenarios.
Photocatalysts possessing high efficiency in degrading aquatic organic pollutants are highly desirable. Although graphene-based nanocomposites exhibit excellent photocatalytic properties, the role of graphene has been largely underestimated. Herein, the photothermal effect of graphene-based nanocomposites is demonstrated to play an important role in the enhanced photocatalytic performance, which has not been considered previously. In our study on degradation of organic pollutants (methylene blue), the contribution of the photothermal effect caused by a nanocomposite consisting of P25 and reduced graphene oxide can be as high as ∼38% in addition to trapping and shuttling photogenerated electrons and increasing both light absorption and pollutant adsorptivity. The result reveals that the photothermal characteristic of graphene-based nanocomposite is vital to photocatalysis. It implies that designing graphene-based nanocomposites with the improved photothermal performance is a promising strategy to acquire highly efficient photocatalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.