This study analyzes the synthesis of carbon-supported core−shell structured Cu@Pd catalysts (Cu@Pd/C) through a galvanic replacement reaction to be utilized in the electrocatalytic oxidation of formic acid. The strategy used in this study explores the relationship among lattice strain, electronic structure, and catalytic performance. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the inclusion of Cu in the nanocatalyst increases lattice strain and results in a downshift of the d-band of palladium. Electrochemical tests show that Cu@Pd/C catalysts exhibit weaker adsorption strength for CO with increased Cu content, which can be attributed to the downshift of the electronic d-band. For the synthesized materials, the Cu@Pd/ C catalyst with a Cu:Pd atomic ratio of 27:73 is found to have the highest activity for formic acid oxidation. A peaklike plot between activity and atomic composition is acquired and reveals the relationship among lattice strain, electronic structure, and catalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.