Severe acute respiratory syndrome (SARS) is a highly infectious disease caused by a novel coronavirus (SARS-CoV). Specific monoclonal antibodies (mAbs) against the SARS-CoV are vital for early diagnosis and pathological studies of SARS. Direct intrasplenic inoculation of plasmid DNA encoding antigen is an effective and fast approach to generate specific mAb when the protein antigen is difficult to prepare or dangerous in use. In this study, we selected one fragment of SARS-CoV spike protein (S1-(3)) as antigenic determinant by immunoinformatics. Single intrasplenic immunization of plasmid DNA encoding S1-(3) induced anti-spike protein antibodies. We established one hybridoma cell line secreting specific mAb and evaluated this mAb with murine leukemia virus pseudotyped with SARS-CoV spike protein (MLV/SARS-CoV). The mAb could recognize the spike protein on the MLV/SARS-CoV-infected Vero E6 cells albeit with no neutralizing effect on the infectivity of the pseudotype virus. Our results show that a single-shot intrasplenic DNA immunization is efficient for the production of specific mAb against SARS spike protein, and a linear epitope of the spike protein is recognized in this study.
Cell surface proteins play an important role in multidrug resistance (MDR). However, the identification involving chemoresistant features for cell surface proteins is a challenge. To identify potential cell membrane markers in hematologic cancer MDR, we used a cell-and antibody-based strategy of subtractive immunization coupled with cell surface comparative screening of leukemia cell lines from sensitive HL60 and resistant HL60/DOX cells. Fifty one antibodies that recognized the cell surface proteins expressed differently between the two cell lines were generated. One of them, the McAb-5D12 not only recognizes its antigen but also block its function. Comparative analysis of immunofluorescence, flow cytometry, and mass spectrum analysis validated that the membrane antigen of McAb-5D12 is a nucleoprotein-polypyrimidine tract binding protein associated splicing factor, PSF. Our results identified that PSF overexpressed on the membrane of sensitive cells compared with resistant cells and its relocation from the nuclear to the cell surface was common in hematological malignancy cell lines and marrow of leukemia patients. Furthermore, we found that cell surface PSF contributed to cell sensitivity by inhibiting cell proliferation. The results represent a novel and potentially useful biomarker for MDR prediction. The strategy enables the correlation of expression levels and functions of cell surface protein with some cell-drug response traits by using antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.