Aim To evaluate geostatistical approaches, namely kriging, co-kriging and geostatistical simulation, and to develop an optimal sampling design for mapping the spatial patterns of bird diversity, estimating their spatial autocorrelations and selecting additional samples of bird diversity in a 2450 km 2 basin. Location Taiwan.Methods Kriging, co-kriging and simulated annealing are applied to estimate and simulate the spatial patterns of bird diversity. In addition, kriging and co-kriging with a genetic algorithm are used to optimally select further samples to improve the kriging and co-kriging estimations. The association between bird diversity and elevation, and bird diversity and land cover, is analysed with estimated and simulated maps. ResultsThe Simpson index correlates spatially with the normalized difference vegetation index (NDVI) within the micro-scale and the macro-scale in the study basin, but the Shannon diversity index only correlates spatially with NDVI within the micro-scale. Co-kriging and simulated annealing simulation accurately simulate the statistical and spatial patterns of bird diversity. The mean estimated diversity and the simulated diversity increase with elevation and decrease with increasing urbanization. The proposed optimal sampling approach selects 43 additional sampling sites with a high spatial estimation variance in bird diversity.Main conclusions Small-scale variations dominate the total spatial variation of the observed diversity due to a lack of spatial information and insufficient sampling. However, simulations of bird diversity consistently capture the sampling statistics and spatial patterns of the observed bird diversity. The data thus accumulated can be used to understand the spatial patterns of bird diversity associated with different types of land cover and elevation, and to optimize sample selection. Co-kriging combined with a genetic algorithm yields additional optimal sampling sites, which can be used to augment existing sampling points in future studies of bird diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.