Concomitant development of [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) aggregation and poly(3-hexylthiophene) (P3HT) crystallization in bulk heterojunction (BHJ) thin-film (ca. 85 nm) solar cells has been revealed using simultaneous grazing-incidence small-/wide-angle X-ray scattering (GISAXS/GIWAXS). With enhanced time and spatial resolutions (5 s/frame; minimum q ≈ 0.004 Å(-1)), synchrotron GISAXS has captured in detail the fast growth in size of PCBM aggregates from 7 to 18 nm within 100 s of annealing at 150 °C. Simultaneously observed is the enhanced crystallization of P3HT into lamellae oriented mainly perpendicular but also parallel to the substrate. An Avrami analysis of the observed structural evolution indicates that the faster PCBM aggregation follows a diffusion-controlled growth process (confined by P3HT segmental motion), whereas the slower development of crystalline P3HT nanograins is characterized by constant nucleation rate (determined by the degree of supercooling and PCBM demixing). These two competing kinetics result in local phase separation with space-filling PCBM and P3HT nanodomains less than 20 nm in size when annealing temperature is kept below 180 °C. Accompanying the morphological development is the synchronized increase in electron and hole mobilities of the BHJ thin-film solar cells, revealing the sensitivity of the carrier transport of the device on the structural features of PCBM and P3HT nanodomains. Optimized structural parameters, including the aggregate size and mean spacing of the PCBM aggregates, are quantitatively correlated to the device performance; a comprehensive network structure of the optimized BHJ thin film is presented.
The power conversion efficiency of a device incorporating a crystalline polymer/fullerene thin film improves from 5% to 7.3% – a relative increase of 45% – when an additive, diiodohexane (DIH), is present during processing. The DIH‐processed active layer exhibits substantially enhanced polymer crystallinity and smaller fractal‐like fullerene clusters.
In this study, we used simultaneous synchrotron grazing incidence X-ray scattering and diffraction to elucidate the overall morphologies of bulk heterojunction (BHJ) thin film (ca. 100 nm) solar cells containing phase-separated poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) domains. Specifically, the dimensions and orientation of the P3HT crystallites and the sizes of the PCBM aggregates in BHJ thin films were determined. The appropriate PCBM aggregate size and density required for an optimum performance of the film in the photovoltaics device resulted in deteriorated ordering in the out-of-plane direction, but improved the in-plane packing of the P3HT lamellae. When the P3HT crystallites and PCBM aggregates had comparable domain sizes and number densities, the interpercolated networks for electron-and hole-transport were optimized in the film. This new understanding of the underlying mechanism of carrier mobility in BHJ thin films might be crucial in improving the efficiency of future solar cells.
In this paper, distinctive indium-tin-oxide (ITO) nanorods are employed to serve as buried electrodes for polymer-based solar cells. The embedded nanoelectrodes allow three-dimensional conducting pathways for low-mobility holes, offering a highly scaffolded cell architecture in addition to bulk heterojunctions. As a result, the power conversion efficiency of a polymer cell with ITO nanoelectrodes is increased to about 3.4% and 4.4% under one-sun and five-sun illumination conditions, respectively, representing an enhancement factor of up to ∼10% and 36% compared to a conventional counterpart. Also, the corresponding device lifetime is prolonged twice as much to about 110 min under five-sun illumination.
We have prepared photovoltaic devices based on blend films of CdSe tetrapods and the donor/acceptor conjugated polymer PDTTTPD, which comprises 2,5-di(thiophen-2-yl)thieno [3,2-b]thiophene and thieno [3,4-c]pyrrole-4,6-dione units. The AM1.5 power conversion efficiency (PCE) of a photovoltaic device containing a PDTTTPD/CdSe tetrapod blend (1 : 9, w/w) that had experienced thermal annealing (130 C, 20 min) was three times greater than that of the corresponding device incorporating the as-prepared PDTTTPD/CdSe tetrapod blend (2.9% vs. 1.0%). Synchrotron X-ray reflectivity revealed that annealing (i.e., removal of pyridine ligands from the surfaces of the CdSe tetrapods) caused the thickness of the PDTTTPD/CdSe tetrapod blend film to decrease (and its average density to increase) relative to that of the as-prepared blend film. Transmission electron microscopy and atomic force microscopy revealed that thermal annealing enhanced the degree of aggregation of the CdSe tetrapods and induced denser morphologies, leading to substantially increased charge transport, which enhanced the PCE of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.