SUMMARY Comprehensive multiplatform analysis of 80 uveal melanomas (UM) identifies four molecularly distinct, clinically relevant subtypes: two associated with poor-prognosis monosomy 3 (M3) and two with better-prognosis disomy 3 (D3). We show that BAP1 loss follows M3 occurrence and correlates with a global DNA methylation state that is distinct from D3-UM. Poor-prognosis M3-UM divide into subsets with divergent genomic aberrations, transcriptional features, and clinical outcomes. We report change-of-function SRSF2 mutations. Within D3-UM, EIF1AX- and SRSF2/SF3B1 -mutant tumors have distinct somatic copy number alterations and DNA methylation profiles, providing insight into the biology of these low-versus intermediate-risk clinical mutation subtypes.
Cancer cells survive cellular crisis through telomere maintenance mechanisms. We report telomere lengths in 18,430 samples, including tumors and non-neoplastic samples, across 31 cancer types. Tumor telomeres were shorter compared to normal tissues, and longer in sarcomas and gliomas compared to other cancers. Amongst 6,835 cancers, 73% expressed telomerase reverse transcriptase (TERT), which was associated with TERT point mutations, rearrangements, DNA amplifications, and transcript fusions, and predicted telomerase activity. TERT promoter methylation provided an additional deregulatory TERT expression mechanism. Five percent of cases, mostly with undetectable TERT, harbored ATRX or DAXX alterations, demonstrated elongated telomeres and increased telomeric repeat containing RNA (TERRA). The remaining 22% of tumors neither expressed TERT, nor harbored alterations in ATRX/DAXX. In this group, telomere length positively correlated with TP53 and RB1 mutations. Our analysis integrates TERT abnormalities, telomerase activity and genomic alterations with telomere length in cancer.
Gene fusion represents a class of molecular aberrations in cancer and has been exploited for therapeutic purposes. In this paper we describe TumorFusions, a data portal that catalogues 20 731 gene fusions detected in 9966 well characterized cancer samples and 648 normal specimens from The Cancer Genome Atlas (TCGA). The portal spans 33 cancer types in TCGA. Fusion transcripts were identified via a uniform pipeline, including filtering against a list of 3838 transcript fusions detected in a panel of 648 non-neoplastic samples. Fusions were mapped to somatic DNA rearrangements identified using whole genome sequencing data from 561 cancer samples as a means of validation. We observed that 65% of transcript fusions were associated with a chromosomal alteration, which is annotated in the portal. Other features of the portal include links to SNP array-based copy number levels and mutational patterns, exon and transcript level expressions of the partner genes, and a network-based centrality score for prioritizing functional fusions. Our portal aims to be a broadly applicable and user friendly resource for cancer gene annotation and is publicly available at http://www.tumorfusions.org.
Immune checkpoint therapies exhibit impressive efficacy in some patients with melanoma or lung cancer, but the lack of response in most cases presses the question of how general efficacy can be improved. In addressing this question, we generated a preclinical tumor model to study anti-PD-1 resistance by in vivo passaging of Kras-mutated, p53-deficient murine lung cancer cells (p53R172HΔg/+K-rasLA1/+) in a syngeneic host exposed to repetitive dosing with anti-mouse PD-1 antibodies. PDL1 (CD274) expression did not differ between the resistant and parental tumor cells. However the expression of important molecules in the antigen presentation pathway, including major histocompatibility complex (MHC) class I and II, as well as β2-microglobulin were significantly downregulated in the anti-PD1-resistant tumors compared with parental tumors. Resistant tumors also contained fewer CD8+ (CD8α) and CD4+ tumor-infiltrating lymphocytes (TILs) and reduced production of interferon-γ (IFN-γ). Localized radiotherapy induced IFN-β production, thereby elevating MHC class I expression on both parental and resistant tumor cells and restoring the responsiveness of resistant tumors to anti-PD1 therapy. Conversely, blockade of type I IFN signaling abolished the effect of radiosensitization in this setting. Collectively, these results identify a mechanism of PD1 resistance and demonstrate that adjuvant radiation therapy can overcome resistance. These findings have immediate clinical implications for extending the efficacy of anti-PD-1 immune checkpoint therapy in patients.
Summary Synthetic and collateral lethality have provided conceptual frameworks to identify cancer-specific vulnerabilities1–3. Here, we explored an approach to identify potential synthetic lethal interactions through screening mutually exclusive deletion patterns in cancer genomes. We sought to identify ‘synthetic essential’ genes, which might be occasionally deleted in some cancers but almost always retained in the context of a specific tumor suppressor deficiency, and posited that such synthetic essential genes would be therapeutic targets in cancers harboring specific tumor suppressor deficiencies. In addition to known synthetic lethal interactions, this approach uncovered the chromatin helicase DNA-binding factor CHD1 as a putative synthetic essential gene in PTEN-deleted cancers. In PTEN-deleted prostate and breast cancers, functional analysis showed that CHD1 depletion profoundly and specifically suppressed cell proliferation, survival and tumorigenic potential. Mechanistically, functional PTEN stimulates GSK3β-mediated phosphorylation of CHD1 degron domains, which promotes CHD1 degradation via β-TrCP-mediated ubiquitination-proteasome pathway. Conversely, PTEN deficiency results in CHD1 protein stabilization, which in turn engages the H3K4me3 mark to activate transcription of the pro-tumorigenic TNFα/NF-κB gene network. Together, this study identifies a novel PTEN pathway in cancer and provides a framework for the discovery of trackable targets in cancers harboring specific tumor suppressor deficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.