The fabrication of affordable biodegradable plastics remains a challenging issue for both the scientific community and industries as mechanical properties and biodegradability improve at the expense of the high cost of the material. Hence, the present work deals with fabrication and characterization of biodegradable polymer with 40% rice husk waste filler and 60% polymer-containing mixture of polybutylene succinate (PBS) and poly butylenes adipate-Co-terephthalate (PBAT) to achieve good mechanical properties, 92% biodegradation in six months, and competitive pricing. The challenge in incorporating high amounts of hydrophilic nature filler material into hydrophobic PBS/PBAT was addressed by adding plasticizers such as glycerol and calcium stearate. The compatibilizers such as maleic anhydride (MA) and dicumyl peroxide (DCP) was used to improve the miscibility between hydrophobic PBS/PBAT and hydrophilic filler material. The component with the formulation of 24:36:40 (PBS/PBAT/TPRH) possessed the tensile strength of 14.27 MPa, modulus of 200.43 MPa, and elongation at break of 12.99%, which was suitable for the production of molded products such as a tray, lunch box, and straw. The obtained composite polymer achieved 92% mass loss after six months of soil burial test confirming its biodegradability.
Although noteworthy cell death was reported, DNA fragmentation assay and real-time PCR confirmed that that induced by latex C-serum subfractions was not promoted via the classical apoptotic signalling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.