Solution processing enables organic devices to be fabricated cost-effectively, while deep-red emitters enable displays with high color saturation and lighting with high light quality. However, limited deep-red emitters were reported with solutionprocess feasibility and high efficiency. We demonstrate here a high-efficiency, solution-process-feasible deep-red emitter by coupling the highly efficient phosphorescent complex with a highly thermally stable fluorescent compound. The device exhibits a maximum external quantum efficiency of 11.2% at 10 cd m −2 and 8.4% at 100 cd m −2 . The latter is coupled with an ultradeep red emission (0.70, 0.27) and a potential color saturation of 108%. Besides the intrinsically high-efficiency nature of the phosphorescent complex, the record high efficiency may be attributable to the spirally configured fluorene moiety in the fluorescent compound to prevent concentration-quenching effect, a proper host to enable an effective host-to-guest energy transfer, and the employed cohost with electron-trapping character to enable a balanced carrier injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.