Fast radio bursts (FRBs) are mysterious millisecond-duration radio transients 1, 2. Two possible mechanisms that could generate extremely coherent emission from FRBs invoke neutron star magnetospheres 3-5 or relativistic shocks far from the central energy source 6-8. Detailed polarization observations may help us to understand the emission mechanism. However, the available FRB polarization data have been perplexing, because they show a host of polarimetric properties, including either a constant polarization angle during each burst for some repeaters 9, 10 , or variable polarization angles in some other apparently one-off events 11, 12. Here we report observations of 15 bursts from FRB 180301 and find various polarization
Fast radio bursts (FRBs) are highly dispersed radio bursts prevailing in the universe [1][2][3] . The recent detection of FRB 200428 from a Galactic magnetar [4][5][6][7][8] suggested that at least some FRBs originate from magnetars, but it is unclear whether the majority of cosmological FRBs, especially the actively repeating ones, are produced from the magnetar channel. Here we report the detection of 1863 polarised bursts from the repeating source FRB 20201124A 9 during a dedicated radio observational campaign of Five-hundred-meter Aperture Spherical radio Telescope (FAST). The large sample of radio bursts detected in 88 hr over 54 days indicate a significant, irregular, short-time variation of the Faraday rotation measure (RM) of the source during the first 36 days, followed by a constant RM during the later 18 days. Significant circular polarisation up to 75% was observed in a good fraction of bursts. Evidence suggests that some low-level circular polarisation originates from the conversion from linear polarisation during the propagation of the radio waves, but an intrinsic radiation mechanism is required to produce the higher degree of circular polarisation. All of these features provide evidence for a more complicated, dynamically evolving, magnetised immediate environment around this FRB source. Its host galaxy was previously known 10-12 . Our optical observations reveal that it is a Milky-Way-sized, metal-rich, barred-spiral galaxy at redshift z = 0.09795 ± 0.00003, with the FRB source residing in a low stellar density, interarm region
We study effects of the interplanetary magnetic field (IMF) orientation on the terrestrial tail bow shock location and shape by using global MHD magnetosphere model and empirical bow shock models. It is shown that the tail bow shock cross section is well approximated by an ellipse with the direction of the major axis roughly perpendicular to the IMF clock angle direction. With the increasing IMF clock angle, the eccentricity of the bow shock cross section increases for northward IMF but decreases for southward IMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.