The anticancer traditional Chinese medicine (TCM), plumbagin (PLN), was isolated from Plumbago Zeylanica. Reaction of plumbagin with Cu(II) salt, afforded [Cu(PLN)(2)].2H(2)O (1). With 2,2'-bipyridine (bipy) as a co-ligand, PLN reacts with Cu(II) to give [Cu(PLN)(bipy)(H(2)O)](2)(NO(3))(2).4H(2)O (2). 1 and 2 were characterized by elemental analysis, IR, ESI-MS spectra. Their crystal structures were determined by single crystal X-ray diffraction methods. The in vitro cytotoxicity of PLN, 1 and 2 against seven human tumour cell lines was assayed. The metal-based compounds exhibit enhanced cytotoxicity vs. that of free PLN, suggesting that these compounds display synergy in the combination of metal ions with PLN. The binding properties of PLN, 1 and 2 to DNA were investigated through UV-vis, fluorescence, CD spectra, and gel mobility shift assay, which indicated that 1 and 2 were non-covalent binding and mainly intercalated the neighboring base pairs of DNA. PLN, 1 and 2 exhibit inhibition activity to topoisomerase I (TOPO I), but 1 and 2 were more effective than PLN.
Complexes of copper (II) with hesperetin, naringenin, and apigenin of general composition [CuL2(H2O)2] ⋅ nH2O
(1–3) have been synthesized and characterized by elemental analysis, UV-Vis, FT-IR, ESI-MS, and TG-DTG thermal analysis. The free ligands and the metal complexes have been tested in vitro against human cancer cell lines hepatocellular carcinoma (HepG-2), gastric carcinomas (SGC-7901), and cervical carcinoma (HeLa). Complexes 1 and 3 were found to exhibit growth inhibition of SGC-7901 and HepG2 cell lines with respect to the free ligands; the inhibitory rate of complex 1 is 43.2% and 43.8%, while complex 3 is 46% and 36%, respectively. The interactions of complex 1 and its ligand Hsp with calf thymus DNA were investigated by UV-Vis, fluorescence, and CD spectra. Both complex 1 and Hsp were found to bind DNA in intercalation modes, and the binding affinity of complex 1 was stronger than that of free ligand.
Try-Cu exhibited its antitumor activity mainly via inhibiting telomerase by interaction with the c-myc promoter and disrupting mitochondrial functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.