Mutations in isocitrate dehydrogenases (IDHs) have a gainof-function effect leading to R(À)-2-hydroxyglutarate (R-2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R-and S-2HG inhibit 2-oxoglutarate (2OG)-dependent oxygenases with varying potencies. Half-maximal inhibitory concentration (IC 50 ) values for the R-form of 2HG varied from approximately 25 lM for the histone N e -lysine demethylase JMJD2A to more than 5 mM for the hypoxia-inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH-associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation.
The non-essential amino acid serine supports several metabolic processes that are crucial for the growth and survival of proliferating cells, including protein, amino acid and glutathione synthesis. As an important one-carbon donor to the folate cycle, serine contributes to nucleotide synthesis, methylation reactions and the generation of NADPH for antioxidant defence. Many cancer cells are highly dependent on serine, a trait that provides several novel therapeutic opportunities, either through the inhibition of de novo serine synthesis or by limiting the availability or uptake of exogenous serine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.