BackgroundToxoplasma gondii, a protozoan parasite, infects almost all warm-blooded animals and humans. Limited information is available about T. gondii infection in Tibetan Sheep in Gansu province, northwestern China. In the present study, we estimated the seroprevalence and risk factors of T. gondii infection in this region of China.ResultsA total of 1732 Tibetan Sheep were included from Tianzhu and Maqu in Gansu province. Antibodies to T. gondii were examined by modified agglutination test (MAT), and 352 (20.3%) out of 1732 Tibetan sheep were found positive. Multivariate logistic regression analysis was used to analyze the risk factors associated with seroprevalence, the results showed that age, gender, and numbers of past pregnancies were not the significant risk factors. However, Tibetan sheep in Maqu had a 1.64 times (odds ratio [OR] =1.637, 95% CI =1.291-2.075, P < 0.001) higher seroprevalence compared to Tianzhu, and the seropositivity in summer were 1.61 times (OR =1.608, 95% CI =1.122-2.303, P = 0.010) higher compared to Tibetan sheep in winter, followed by 1.42 times (OR =1.419, 95% CI =1.002-2.011, P = 0.049) in spring. Thus, season and location were considered as risk factors associated with T. gondii infection in this study.ConclusionsThis is the first report of T. gondii seroprevalence in Tibetan sheep in Gansu province, which enriches the epidemiological data of T. gondii infection in Tibetan sheep in China. The results of this study indicate that Tibetan sheep in Gansu province are frequently exposed to T. gondii, posing a direct threat to the public health as well as to local sheep industry. These data is useful to strengthen future prevention and control of T. gondii infection in Tibetan sheep in this region.
BackgroundCryptosporidium is an enteric apicomplexan parasite, which can infect yaks, leading to reduction of milk production and poor weight gain. White yak (Bos grunniens) is a unique yak breed inhabiting only in Tianzhu Tibetan Autonomous County, Gansu province, northwestern China. The objective of the present study was to molecularly determine Cryptosporidium infection and species in white yaks.FindingsSeventy-six fecal samples from white yaks in Tianzhu Tibetan Autonomous County, Gansu province were collected. The small subunit ribosomal RNA (SSU rRNA) gene of each sample was amplified using nested PCR and sequenced. The Cryptosporidium species was determined by comparison of the obtained sequences with that of corresponding Cryptosporidium sequences available in GenBank by BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and phylogenetic analysis with maximum likelihood (ML) using PAUP*. The overall prevalence of Cryptosporidium infection in white yak was 5.26% (4/76). Species identification showed C. andersoni in one sample (collected in September), and C. bovis in three samples (one collected in November and two collected in September).ConclusionsThe present investigation revealed the existence of Cryptosporidium infection in white yaks in China, for the first time, and two Cryptosporidium species, namely C. andersoni and C. bovis, were identified. These findings extend the host range for Cryptosporidium spp., and also provide base-line information for further studies of molecular epidemiology and control of Cryptosporidium infection in the unique white yaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.