We demonstrate up-conversion single-photon detection for the 1550-nm telecommunications band using a PPLN waveguide, long-wavelength pump, and narrowband filtering using a volume Bragg grating. We achieve total-system detection efficiency of around 30% with noise at the dark-count level of a Silicon APD. Based on the new detector, a single-pixel up-conversion infrared spectrometer with a noise equivalent power of -142 dBm Hz(-1/2) was demonstrated, which was as good as a liquid nitrogen cooled CCD camera.
We demonstrate an ultrabright narrow-band two-photon source at the 1.5 -μm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 10 4 . Our measurement of the second-order correlation function (2) ( ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 -μm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 10 5 pairs/(s・MHz・mW) is also the highest reported over all wavelengths.
By engineering and manipulating quantum entanglement between incoming photons and experimental apparatus, we construct single-photon detectors which cannot distinguish between photons of very different wavelengths. These color erasure detectors enable a new kind of intensity interferometry, with potential applications in microscopy and astronomy. We demonstrate chromatic interferometry experimentally, observing robust interference using both coherent and incoherent photon sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.