[1] The past decade has seen significant progress in characterizing uncertainty in environmental systems models, through statistical treatment of incomplete knowledge regarding parameters, model structure, and observational data. Attention has now turned to the issue of model structural adequacy (MSA, a term we prefer over model structure "error"). In reviewing philosophical perspectives from the groundwater, unsaturated zone, terrestrial hydrometeorology, and surface water communities about how to model the terrestrial hydrosphere, we identify several areas where different subcommunities can learn from each other. In this paper, we (a) propose a consistent and systematic "unifying conceptual framework" consisting of five formal steps for comprehensive assessment of MSA; (b) discuss the need for a pluralistic definition of adequacy; (c) investigate how MSA has been addressed in the literature; and (d) identify four important issues that require detailed attention-structured model evaluation, diagnosis of epistemic cause, attention to appropriate model complexity, and a multihypothesis approach to inference. We believe that there exists tremendous scope to collectively improve the scientific fidelity of our models and that the proposed framework can help to overcome barriers to communication. By doing so, we can make better progress toward addressing the question "How can we use data to detect, characterize, and resolve model structural inadequacies?"
s u m m a r y Sensitivity analysis (SA) aims to identify the key parameters that affect model performance and it plays important roles in model parameterization, calibration, optimization, and uncertainty quantification. However, the increasing complexity of hydrological models means that a large number of parameters need to be estimated. To better understand how these complex models work, efficient SA methods should be applied before the application of hydrological modeling. This study provides a comprehensive review of global SA methods in the field of hydrological modeling. The common definitions of SA and the typical categories of SA methods are described. A wide variety of global SA methods have been introduced to provide a more efficient evaluation framework for hydrological modeling. We review, analyze, and categorize research into global SA methods and their applications, with an emphasis on the research accomplished in the hydrological modeling field. The advantages and disadvantages are also discussed and summarized. An application framework and the typical practical steps involved in SA for hydrological modeling are outlined. Further discussions cover several important and often overlooked topics, including the relationship between parameter identification, uncertainty analysis, and optimization in hydrological modeling, how to deal with correlated parameters, and time-varying SA. Finally, some conclusions and guidance recommendations on SA in hydrological modeling are provided, as well as a list of important future research directions that may facilitate more robust analyses when assessing hydrological modeling performance.
[1] Hydrologic systems are open and complex, rendering them prone to multiple conceptualizations and mathematical descriptions. There has been a growing tendency to postulate several alternative hydrologic models for a site and use model selection criteria to (1) rank these models, (2) eliminate some of them, and/or (3) weigh and average predictions and statistics generated by multiple models. This has led to some debate among hydrogeologists about the merits and demerits of common model selection (also known as model discrimination or information) criteria such as AIC, AICc, BIC, and KIC and some lack of clarity about the proper interpretation and mathematical representation of each criterion. We examine the model selection literature to find that (1) all published rigorous derivations of AIC and AICc require that the (true) model having generated the observational data be in the set of candidate models; (2) though BIC and KIC were originally derived by assuming that such a model is in the set, BIC has been rederived by Cavanaugh and Neath (1999) without the need for such an assumption; and (3) KIC reduces to BIC as the number of observations becomes large relative to the number of adjustable model parameters, implying that it likewise does not require the existence of a true model in the set of alternatives. We explain why KIC is the only criterion accounting validly for the likelihood of prior parameter estimates, elucidate the unique role that the Fisher information matrix plays in KIC, and demonstrate through an example that it imbues KIC with desirable model selection properties not shared by AIC, AICc, or BIC. Our example appears to provide the first comprehensive test of how AIC, AICc, BIC, and KIC weigh and rank alternative models in light of the models' predictive performance under cross validation with real hydrologic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.