Many spintronic devices rely on the presence of spin-polarized currents at zero magnetic field. This is often obtained by spin exchange-bias, where an element with long-range magnetic order creates magnetized states and displaces the hysteresis loop. Here we demonstrate that exchange-split spin states are observable and usable in the smallest conceivable unit: a single magnetic molecule. We use a redox-active porphyrin as a transport channel, coordinating a dysprosium-based single-molecule-magnet inside a graphene nano-gap. Single-molecule transport in magnetic field reveals the existence of exchange-split channels with different spin-polarizations that depend strongly on the field orientation, and comparison with the diamagnetic isostructural compound and milikelvin torque magnetometry unravels the role of the single-molecule anisotropy and the molecular orientation. These results open a path to using spin-exchange in molecular electronics, and offer a method to quantify the internal spin structure of single molecules in multiple oxidation states.
We explore the usage of pulse sequence optimization to boost the quantum properties of topological defects in molecular graphenoids at high temperatures. We reach spin-lattice relaxation times on the same order as those of the best quantum devices in the literature, ∼1 ms at room temperature. The coherence time is shown to be heavily affected by the hyperfine interaction and by the high concentration of hydrogen atoms in particular. We test and compare the applicability and performance of different decoupling sequences in enhancing the coherence, identifying the best-performing sequences for the purposes of robust state initialization and coherence optimization. Coherence times up to 30 μs are reached, and we provide insight into the system-environment interaction mechanisms, with a semiclassical model that considers the nuclear bath as a source of a classical random noise and the dynamical decoupling as a filter function. Full deconvolution of the noise spectrum of the bath is obtained, and we show the noise density has a Lorentzian shape whose parameters describe the nuclear-bath dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.