Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator.
Bright n‐ZnO nanowire/p‐GaN film hybrid heterojunction light‐emitting‐diode (LED) devices are fabricated by directly growing n‐type ZnO‐nanowire arrays on p‐GaN wafers. UV–blue electroluminescence emission was observed from the heterojunction diodes, and the heterojunction LED device exhibited a high sensitivity in responding to UV irradiation.
Vertically aligned ZnO-ZnS heterojunction nanowire (NW) arrays were synthesized by thermal evaporation in a tube furnace under controlled conditions. Both ZnO and ZnS are of wurtzite structure, and the axial heterojunctions are formed by epitaxial growth of ZnO on ZnS with an orientation relationship of [0001](ZnO)//[0001](ZnS). Vertical ZnS NW arrays have been obtained by selectively etching ZnO-ZnS NW arrays. Cathodoluminescence measurements of ZnO-ZnS NW arrays and ZnS NW arrays show emissions at 509 and 547 nm, respectively. Both types of aligned NW arrays have been applied to convert mechanical energy into electricity when they are deflected by a conductive AFM tip in contact mode. The received results are explained by the mechanism proposed for nanogenerator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.