A motion-cueing algorithm is a motion simulation system that makes the pilot feel the flight motion by calculating the attitude of the platform. This paper presents the design a kinematics model and two motion-cueing algorithms for a multi-axis motion platform. Firstly, the relationship between each axis is derived from the kinematics theory and motion platform transformation. Next, two motion-cueing algorithms are designed providing the pilot with the bodily sensations of the 6-DoF motion platform. By using a hardware-in-the-loop (HIL) approach simulated in a real-time digital simulator, the control operations are performed in a digital signal processor (DSP). All of the motion-cueing algorithms, including the classical washout algorithm and the optimal control algorithm, are realized through a DSP, TMS-320F-28377D. The simulation results verify the theoretical analysis and illustrate the correctness and practicability of the proposed method.
In this study, we present a design and a control based on a microcontroller for a multi-axis servo motion chair. The main purpose was to provide the pilot with the tactile sensations required by the human body to increase the immersion of simulation training. With high system control reliability and multi-functionality, the proposed architecture was built with an effective split of the control tasks involved between a master controller and five slave drivers. To assess the effectiveness of the proposed control system, RS485 and RS232 communication transmission interfaces were provided for the control system to obtain related movement information. The performance of the motion chair was assessed through various experimental tests. The results confirmed that the proposed multi-core system-on-chip microcontroller (MCU) with independent communication and real-time control subsystems was feasible to control a multi-axis servo motion chair system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.