Staple foods, such as rice, can now be enriched in micronutrients through conventional breeding (i.e., biofortification) to enhance dietary intake of vulnerable populations. The objectives of this study were (1) to establish a rapid, high capacity Caco-2 cell model to determine the relative bioavailability of zinc (Zn) from samples of staple food breeding lines for potential use as a guideline for selection/breeding and (2) to determine the relative bioavailability of Zn from conventional rice varieties and one Zn-biofortified type. Polished or undermilled, parboiled rice samples were digested in vitro with pepsin and pH adjustment, and by pancreatic enzymes. Zn uptake from digested samples was measured in Caco-2 cells in culture. A previously validated rat pup model was also used to assess Zn absorption in vivo, using gastric intubation and (65)Zn labeling. Pups were killed after 6 h, and radioactivity in tissues and in small intestine perfusate and cecum-colon contents was used to measure Zn bioavailability. A biofortified rice variety contained substantially more Zn than conventional varieties, with no change in phytate content. Absorbed Zn (μg/g rice) was significantly higher from the new variety in both the in vitro Caco-2 cell model (2.1-fold) and the rat pup model (2.0-fold). Results from the two models were highly correlated, particularly for the polished samples. Biofortification of rice with Zn results in significantly increased Zn uptake in both models. Since results from the Caco-2 cell model correlated well with those from rat pups, this cell model is likely to predict results in human populations and can be used for screening purposes.
Interactions among zinc (Zn), insulin, and glucose metabolism are complex. Maternal Zn deficiency affects maternal carbohydrate metabolism, but the mechanisms underlying changes in glucose homeostasis of offspring are not well understood. Rats consumed Zn-deficient (ZnD; 7 microg/g) or control (ZnC; 25 microg/g) diets ad libitum from 3 wk preconception to 21 d postparturition. Litters were culled to 7 pups/dam postnatally and pups were allowed to nurse their original mothers; after weaning, pups were fed nonpurified diet. Insulin and glucose tolerance tests were performed on the pups at wk 5 and 10. Although there was no difference in birth weight between groups, ZnD pups weighed significantly more than controls by d 10 (+5%) and 20 (+10%). Both blood glucose and serum insulin-like growth factor (IGF-1) concentrations at wk 3 were significantly higher in ZnD pups than in controls. Both male and female ZnD rats were less sensitive to insulin and glucose stimulation than controls at wk 5 and 10. At wk 15, serum leptin concentrations were higher in male ZnD rats than in controls. Phosphorylation of muscle Akt protein, an insulin receptor (IR) signaling intermediate, was lower in female ZnD rats than in controls at wk 15, but they did not differ in phosphorylation of IR. Maternal Zn deficiency resulted in greater serum IGF-1 concentrations and the excessive postnatal weight gain in their offspring as well as impaired subsequent glucose sensitivity. It was associated with gender-specific alterations in the serum leptin concentration and the insulin signaling pathway. These findings suggest that suboptimal maternal Zn status induces long-term changes in the offspring related to abnormal glucose tolerance.
Intestinal zinc (Zn) absorption and liver Zn mobilization are presumed to regulate Zn homeostasis. Several Zn transporters have been identified; however, their contribution to Zn homeostasis is poorly understood. Moreover, their regulation during periods of growth is unknown. To characterize the mechanisms that maintain Zn status, weanling rats were fed control (25 mg/kg), marginally low (MLZ; 15 mg/kg), low (LZ; 7 mg/kg), or very low (VLZ; <1 mg/kg) Zn diets for 3 wk and effects on jejunum Zip4 and ZnT1 and hepatic Zip1 and ZnT1 were assessed. Another control group was pair-fed (PF) to VLZ. The MLZ rats had lower jejunum ZnT1 protein abundance than the control. In the LZ group, we detected increased jejunum Zip4 mRNA expression and hepatic ZnT1 protein abundance and reduced jejunum Zip4 and ZnT1 and hepatic Zip1 protein abundance. VLZ had lower jejunum ZnT1 mRNA and protein abundance and hepatic Zip1 and ZnT1 protein abundance compared with the PF group. Zip4 protein was present at the intestinal villus tip in controls but was detected on the apical membrane throughout the entire villus in LZ rats. ZnT5 protein in jejunum was always detected at the apical membrane and also at the basolateral membrane of VLZ rats. In contrast, ZnT7 was found intracellularly in jejunum. Our data suggest that effects of Zn deficiency on Zn homeostasis occurs biphasically during marginal Zn deficiency through increased intestinal Zn uptake capacity and reduced intestinal Zn efflux, then during more pronounced degrees of Zn deficiency through decreased liver Zn accretion and increased hepatic Zn efflux back into circulation. These results assist in our understanding of how mammals regulate Zn homeostasis.
Zn absorption is developmentally regulated through intestinal Zn efflux and sequestration and import mechanisms, which may be responsible for differences in Zn absorption observed between infants and adults.
Early postnatal growth retardation is associated with poorer medium-term growth and poorer developmental outcome. Increased catch-up growth is associated with improved developmental outcome but with increased body adiposity, without any significant effect on glucose homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.