In this study, we developed curcumin-encapsulated hyaluronic acid–polylactide nanoparticles (CEHPNPs) to be used for liver fibrosis amelioration. CD44, the hyaluronic acid (HA) receptor, is upregulated on the surface of cancer cells and on activated hepatic stellate cells (aHSCs) rather than normal cells. CEHPNPs could bind to CD44 and be internalized effectively through endocytosis to release curcumin, a poor water-soluble liver protective agent. Thus, CEHPNPs were potentially not only improving drug efficiency, but also targeting aHSCs. HA and polylactide (PLA) were crosslinked by adipic acid dihydrazide (ADH). The synthesis of HA–PLA was monitored by Fourier-transform infrared (FTIR) and Nuclear Magnetic Resonance (NMR). The average particle size was approximately 60–70 nm as determined by dynamic light scattering (DLS) and scanning electron microscope (SEM). Zeta potential was around −30 mV, which suggested a good stability of the particles. This drug delivery system induced significant aHSC cell death without affecting quiescent HSCs, hepatic epithelial, and parenchymal cells. This system reduced drug dosage without sacrificing therapeutic efficacy. The cytotoxicity IC50 (inhibitory concentration at 50%) value of CEHPNPs was approximately 1/30 to that of the free drug treated group in vitro. Additionally, the therapeutic effects of CEHPNPs were as effective as the group treated with the same curcumin dose intensity in vivo. CEHPNPs significantly reduced serum aspartate transaminase/alanine transaminase (ALT/AST) significantly, and attenuated tissue collagen production and cell proliferation as revealed by liver biopsy. Conclusively, the advantages of superior biosafety and satisfactory therapeutic effect mean that CEHPNPs hold great potential for treating hepatic fibrosis.
Four metal benzylalkoxides, [L 2 M 2 (l-OBn) 2 ] (M ¼ Mg or Zn), based on NNO-tridentate ketiminate ligands are synthesized and characterized. X-ray crystal structural studies of [(L 1 ) 2 Mg 2 (l-OBn) 2 ] (1a) and [(L 1 ) 2 Zn 2 (l-OBn) 2 ] (1b) (L 1 -H ¼ (Z)-4-((2-(dimethylamino)ethylamino)(phenyl)methylene)-3-methyl-1-phenyl-pyrazol-5-one) reveal that both complexes 1a and 1b are dinuclear species whereas the geometry around the metal center is penta-coordinated bridging through the benzylalkoxy oxygen atoms in the solid structure. The activities and stereoselectivities of these four complexes toward the ring-opening polymerization of L-lactide and rac-lactide are investigated. Polymerization of L-lactide initiated by these four metal benzyloxides proceeds rapidly with good molecular weight control and yields polymer with a very narrow molecular weight distribution. The kinetic studies for the polymerization of L-lactide with compound 1a show first order in both compound 1a and lactide concentrations with the polymerization rate constant, k, of 6.94 M/min. Besides, experimental results demonstrate that among these metal benzylalkoxides, complex 1a exhibits the highest stereoselectivity with a Pr up to 87% and complex 1b possesses the highest activity indicating that the terminal group of NNO-tridentate ketimine ligands exerts a significant influence on both the reactivity and stereoselectivity of these complexes.
Three immobilised lipases were screened and 15 reaction conditions were tested in order to find the combination for maximum yield. The optimisation of 2-PEAc synthesis catalysed by Novozym(®) 435 was successfully developed. The kinetic study of this transesterification reaction showed that it followed an ordered ping-pong bi-bi mechanism without any inhibition by reactants.
Sesame (Sesamum indicum L.) seed has been recognized as a nutritional protein source owing to its richness in methionine. Storage proteins have been implicated in allergenic responses to sesame consumption. Two abundant storage proteins, 11S globulin and 2S albumin, constitute 60-70 and 15-25% of total sesame proteins, respectively. Two gene families separately encoding four 11S globulin and three 2S albumin isoforms were identified in a database search of 3328 expressed sequence tag (EST) sequences from maturing sesame seeds. Full-length cDNA sequences derived from these two gene families were completed by PCR using a maturing sesame cDNA library as the template. The amino acid compositions of these deduced storage proteins revealed that the richness in methionine is attributed mainly to two 2S albumin isoforms and partly to one 11S globulin isoform. The presence of four 11S globulin and three 2S albumin isoforms resolved in SDS-PAGE was confirmed by MALDI-MS analyses. The abundance of these isoforms was in accord with the occurrence frequency of their EST sequences in the database. A comprehensive understanding of these storage proteins at the molecular level may also facilitate the identification of allergens in crude sesame products that have caused severe allergic reactions increasingly reported in the past decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.