In this paper, the performance of multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) is investigated when multiple users are grouped into a cluster. The superiority of MIMO-NOMA over MIMO orthogonal multiple access (MIMO-OMA) in terms of both sum channel capacity and ergodic sum capacity is proved analytically. Furthermore, it is demonstrated that the more users are admitted to a cluster, the lower is the achieved sum rate, which illustrates the tradeoff between the sum rate and maximum number of admitted users. On this basis, a user admission scheme is proposed, which is optimal in terms of both sum rate and number of admitted users when the signal-to-interferenceplus-noise ratio thresholds of the users are equal. When these thresholds are different, the proposed scheme still achieves good performance in balancing both criteria. Moreover, under certain conditions, it maximizes the number of admitted users. In addition, the complexity of the proposed scheme is linear to the number of users per cluster. Simulation results verify the superiority of MIMO-NOMA over MIMO-OMA in terms of both sum rate and user fairness, as well as the effectiveness of the proposed user admission scheme.
Abstract-In this letter, we investigate the energy efficiency (EE) problem in a millimeter wave (mmWave) massive MIMO (mMIMO) system with non-orthogonal multiple access (NOMA). Multiple two-user clusters are formulated according to their channel correlation and gain difference. Following this, we propose a hybrid analog/digital precoding scheme for the low radio frequency (RF) chains structure at the base station (BS). On this basis, we formulate a power allocation problem aiming to maximize the EE under users' quality of service (QoS) requirements and per-cluster power constraint. An iterative algorithm is proposed to obtain the optimal power allocation. Simulation results show that the proposed NOMA achieves superior EE performance than that of conventional OMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.