Abiotic stresses, especially cold, salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Plants have stress-specific adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signaling pathways, some of which are specific, but others may cross-talk at various steps. In this review article, we first expound the general stress signal transduction pathways, and then highlight various aspects of biotic stresses signal transduction networks. On the genetic analysis, many cold induced pathways are activated to protect plants from deleterious effects of cold stress, but till date, most studied pathway is ICE-CBF-COR signaling pathway. The Salt-Overly-Sensitive (SOS) pathway, identified through isolation and study of the sos1, sos2, and sos3 mutants, is essential for maintaining favorable ion ratios in the cytoplasm and for tolerance of salt stress. Both ABA-dependent and -independent signaling pathways appear to be involved in osmotic stress tolerance. ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules and the ROS signaling networks can control growth, development, and stress response. Finally, we talk about the common regulatory system and cross-talk among biotic stresses, with particular emphasis on the MAPK cascades and the cross-talk between ABA signaling and biotic signaling.
FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1) encodes an F-box protein that regulates photoperiod flowering in Arabidopsis under long-day conditions (LDs). Gibberellin (GA) is also important for regulating flowering under LDs. However, how FKF1 and the GA pathway work in concert in regulating flowering is not fully understood. Here, we showed that the mutation of FKF1 could cause accumulation of DELLA proteins, which are crucial repressors in GA signaling pathway, thereby reducing plant sensitivity to GA in flowering. Both in vitro and in vivo biochemical analyses demonstrated that FKF1 directly interacted with DELLA proteins. Furthermore, we showed that FKF1 promoted ubiquitination and degradation of DELLA proteins. Analysis of genetic data revealed that FKF1 acted partially through DELLAs to regulate flowering under LDs. In addition, DELLAs exerted a negative feedback on FKF1 expression. Collectively, these findings demonstrate that FKF1 promotes flowering partially by negatively regulating DELLA protein stability under LDs, and suggesting a potential mechanism linking the FKF1 to the GA signaling DELLA proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.