We propose to realize ultra-wideband polarization conversion metasurfaces in microwave regime through multiple plasmon resonances. An ultra-wideband polarization conversion metasurface is designed using a double-head arrow structure and is further demonstrated both numerically and experimentally. Four plasmon resonances are generated by electric and magnetic resonances, which lead to bandwidth expansion of cross-polarization reflection. The simulated results show that the maximum conversion efficiency is nearly 100% at the four plasmon resonance frequencies and a 1:4 3 dB bandwidth can be achieved for both normally incident x- and y-polarized waves. Experimental results agree well with simulation ones.
The compatible stealth functionality in the infrared (IR) and radar wave bands is the most important research topic in the field of stealth material technology. Here, a new hybrid metasurface (HMS) for infrared-multiband radar stealth-compatible materials was proposed and studied. Two specifically designed metasurface layers that can control the infrared emission and microwave absorption were combined to realize radar and IR bi-stealth. The simulated and experimental results show that the HMS has five strong absorption peaks at f 1 = 6.35, f 2 = 8.38, f 3 = 12.10, f 4 = 15.37 and f 5 = 18.05 GHz. In addition, the emissivity of the proposed HMS is less than 0.32 from 3 to 14 µm and shows low emissivity characteristics in the infrared band. These results demonstrate that the proposal has practical application to multispectral stealth technology. INDEX TERMS Metasurfaces, infrared-radar stealth-compatible, low emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.