A combination of chemotherapy and photothermal therapy has emerged as a promising strategy for cancer therapy. To ensure the chemotherapeutic drug and photothermal agent could be simultaneously delivered to a tumor region to exert their synergistic effect, a safe and efficient delivery system is highly desirable. Herein, we fabricated doxorubicin (DOX) and indocyanine green (ICG) loaded poly(lactic-co-glycolic acid) (PLGA)-lecithin-polyethylene glycol (PEG) nanoparticles (DINPs) using a single-step sonication method. The DINPs exhibited good monodispersity, excellent fluorescence/size stability, and consistent spectra characteristics compared with free ICG or DOX. Moreover, the DINPs showed higher temperature response, faster DOX release under laser irradiation, and longer retention time in tumor. In the meantime, the fluorescence of DOX and ICG in DINPs was also visualized for the process of subcellular location in vitro and metabolic distribution in vivo. In comparison with chemo or photothermal treatment alone, the combined treatment of DINPs with laser irradiation synergistically induced the apoptosis and death of DOX-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells, and suppressed MCF-7 and MCF-7/ADR tumor growth in vivo. Notably, no tumor recurrence was observed after only a single dose of DINPs with laser irradiation. Hence, the well-defined DINPs exhibited great potential in targeting cancer imaging and chemo-photothermal therapy.
An active cell membrane-camouflaged nanoparticle, owning to membrane antigens and membrane structure, can achieve special properties such as specific recognition, long blood circulation, and immune escaping. Herein, we reported a cancer cell membrane-cloaked nanoparticle system as a theranostic nanoplatform. The biomimetic nanoparticles (indocyanine green (ICG)-loaded and cancer cell membrane-coated nanoparticles, ICNPs) exhibit a core-shell nanostructure consisting of an ICG-polymeric core and cancer cell membrane shell. ICNPs demonstrated specific homologous targeting to cancer cells with good monodispersity, preferable photothermal response, and excellent fluorescence/photoacoustic (FL/PA) imaging properties. Benefited from the functionalization of the homologous binding adhesion molecules from cancer cell membranes, ICNPs significantly promoted cell endocytosis and homologous-targeting tumor accumulation in vivo. Moreover, ICNPs were also good at disguising as cells to decrease interception by the liver and kidney. Through near-infrared (NIR)-FL/PA dual-modal imaging, ICNPs could realize real-time monitored in vivo dynamic distribution with high spatial resolution and deep penetration. Under NIR laser irradiation, ICNPs exhibited highly efficient photothermal therapy to eradicate xenografted tumor. The robust ICNPs with homologous properties of cancer cell membranes can serve as a bionic nanoplatform for cancer-targeted imaging and phototherapy.
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.