Compared with other materials, polyethylene terephthalate (PET) has high transparency, excellent physical and mechanical properties in a wide temperature range and good hygiene and safety, so it is widely used in the packaging industry, especially in the packaging of beverages and foods. The optimization of PET bottles is mainly reflected in three aspects: material optimization, structure optimization and process optimization, among which there is much research on material optimization and process optimization, but there is no complete overview on structure optimization. A summary of structural optimization is necessary. Aiming at structural optimization, the finite element method is a useful supplement to the beverage packaging industry. By combining the computer-aided design technology and using finite element software for finite element simulation, researchers can replace the experimental test in the pre-research design stage, predict the effect and save cost. This review summarizes the development of PET bottles for beverage packaging, summarizes various optimization methods for preventing stress cracking in beverage packaging, and especially focuses on comparing and evaluating the effects of several optimization methods for packaging structure. Finally, the future development of all kinds of optimization based on structural optimization in the field of beverage packaging is comprehensively discussed, including personalized design, the combination of various methods and the introduction of actual impact factor calculation.
The polyethylene terephthalate (PET) beverage bottle is one of the most common beverage packages in the world, but the bottom of the PET bottle tends to crack due to excessive stress. In this paper, through numerical simulation and finite element analysis, the mechanical properties of four typical geometric models of bottle bottom are studied, and it is determined that “claw flap bottle bottom (CF-bottom)” has the best structure. Then, the shapes of four bottle bottom structures are fine-tuned by using the automatic optimization method. Under the premise of the same material quality, the surface maximum principal stress, the overall maximum principal stress, and the total elastic strain energy of the bottle bottom are reduced by 46.39–71.81%, 38.16–71.50%, and 38.56–61.38%, respectively, while the deformation displacement is also reduced by 0.63 mm–3.43 mm. In contrast to other papers, this paper dispenses with the manual adjustment of various variables, instead adopting automatic shape optimization to obtain a more accurate model. The percentage of maximum principal stress reduction is remarkable, which provides a feasible theoretical guidance for the structural optimization of PET bottle bottom in the production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.