Accurately assessing the dynamic changes of glaciers under the background of climate warming is of great significance for taking scientific countermeasures to cope with climate change. Aiming at the difficulties of glacier identification, such as mountain and cloud shadow, cloud cover and seasonal snow cover in high altitude areas, this paper proposes a reflectivity difference index for identifying glaciers in shadow and glacial lakes and a multi-temporal minimum band ratio index for reducing the influence of snow cover. It establishes a new large-scale glacier extraction method (so-called Double RF) based on the random forest algorithm of Google Earth Engine (GEE) and applies it to the Tibetan Plateau. The verification results based on 30% sample points show that overall accuracies of the first and second classification of 96.04% and 90.75%, respectively, and Kappa coefficients of 0.92 and 0.83, respectively. Compared with the real glacier dataset, the percentage of correctly extracted glacier area of the total area of glacier dataset (PGD) was 84.07%, and the percentage of correctly extracted glacier area of the total area of extracted glacier (PGE) was 89.06%; the harmonic mean (HM) of the two was 86.49%. The extraction results were superior to the commonly used glacier extraction methods: the band ratio method based on median composite image (Median_Band) (HM = 79.47%), the band ratio method based on minimum composite image (Min_Band) (HM = 81.19%), the normalized difference snow cover index method based on median composite image (Median_NDSI) (HM = 83.48%), the normalized difference snow cover index method based on minimum composite image (Min_NDSI) (HM = 84.08%), the random forest method based on median composite image (Median_RF) (HM = 83.87%) and the random forest method based on minimum composite image (Min_RF) (HM = 85.36%). The new glacier extraction method constructed in this study could significantly improve the identification accuracy of glaciers under the influences of shadow, snow cover, cloud cover and debris. This study provides technical support for obtaining long-term glacier distribution data on the Tibetan Plateau and revealing the impact of climate warming on glaciers on the Tibetan Plateau.
Glacier changes on the Tibetan Plateau are of great importance for regional climate and hydrology and even global ecological changes. It is urgent to understand the effect of climate warming on both clean and debris-covered glaciers on the Tibetan Plateau. This study used the double RF method and Landsat series images to extract clean glaciers and debris-covered glaciers on the Tibetan Plateau from 1985 to 2020 and analyzed their temporal and spatial changes under the background of climate change. The total area of glaciers on the Tibetan Plateau showed a retreating trend from 1985 to 2020, with an average retreat rate of −0.5 % yr−1. The area of clean glaciers showed a significant retreating trend, with a retreat rate of −0.55 % yr−1. The area of debris-covered glaciers showed an expanding trend, with an expanding rate of 0.62 % yr−1. The clean glaciers retreated faster in the southeast and slower in the northwest, while the debris-covered glaciers expanded in most basins. The debris-covered glaciers were generally located at lower elevation areas than those of the clean glaciers. The slopes of clean glaciers were mainly in the range of 0–50°, while the slopes of debris-covered glaciers were mainly in the range of 0–30°. Climate warming was a main driver of glacier change. The clean glacier area was correlated negatively with average temperature in summer and positively with average precipitation in winter, while the debris-covered glacier area was correlated positively with both. The results of the study may provide a basis for scientific management of glaciers on the Tibetan Plateau in the context of climate warming.
Accurate identification and extraction of lake boundaries are the basis of the accurate assessment of lake changes and their responses to climate change. To reduce the effects of lake ice and snow cover, mountain shadows, cloud and fog shielding, alluvial and proluvial deposits, and shoals on the extraction of lake boundaries on the Tibetan Plateau, this study developed an RNSS water index to increase the contrast between the lake and similar surface objects of the spectral curve, and constructed a new method flow for lake extraction on the Tibetan Plateau based on image synthesis, topographic-spectral feature indexes, and machine learning algorithms. The lake extraction effects of three common machine learning classification algorithms were compared: the Cart decision tree, random forest (RF), and gradient boosting decision tree (GBDT). The results show that the new lake extraction method based on topographic-spectral characteristics and the GBDT classification method had the highest extraction accuracy for Tibetan Plateau lakes in 2016 and 2021. Its overall accuracy, Kappa coefficient, user’s accuracy, and producer’s accuracy for 2016 and 2021 were 99.81%, 0.887, 83.55%, 94.67% and 99.88%, 0.933, 89.18%, 98.24%, respectively, and the total area of lake extraction was the most consistent with the validation datasets. The three classification methods can effectively extract lakes covered by ice and snow, and the extraction effect was ranked as GBDT > RF > Cart. The lake extraction effect under mountain shadow was ranked as Cart > GBDT > RF, and the lake extraction effect under alluvial deposits and shoals was ranked as GBDT > RF > Cart. The results may provide technical support for extracting lakes from long time series and reveal the impact of climate change on Tibetan Plateau lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.