In the process of transient test, due to the insufficient bandwidth of the pressure sensor, the test data is inaccurate. Firstly, based on the projection of the shock tube test signal in the sparse domain, the feature expression of the signal sample is obtained. Secondly, the problem of insufficient bandwidth is solved by inverse modeling of sensor dynamic compensation system based on swarm intelligence algorithm. In this paper, the method is used to compensate the shock tube test signals of the 85XX series pressure sensors made by the Endevco company of the United States, the working bandwidth of the sensor is widened obviously, the rise time of the pressure signal can be compensated to 12.5 μs, and the overshoot can be reduced to 8.96%. The repeatability of dynamic compensation is verified for the actual gun muzzle shock wave test data, the results show that the dynamic compensation can effectively recover the important indexes such as overpressure peak value and positive pressure action time, and the original shock wave signal is recovered from the high resonance data.
In the compressed sensing (CS) reconstruction algorithms, the problems of overestimation and large redundancy of candidate atoms will affect the reconstruction accuracy and probability of the algorithm when using Sparsity Adaptive Matching Pursuit (SAMP) algorithm. In this paper, we propose an improved SAMP algorithm based on a double threshold, candidate set reduction, and adaptive backtracking methods. The algorithm uses the double threshold variable step-size method to improve the accuracy of sparsity judgment and reduces the undetermined atomic candidate set in the small step stage to enhance the stability. At the same time, the sparsity estimation accuracy can be improved by combining with the backtracking method. We use a Gaussian sparse signal and a measured shock wave signal of the 15psi range sensor to verify the algorithm performance. The experimental results show that, compared with other iterative greedy algorithms, the overall stability of the DBCSAMP algorithm is the strongest. Compared with the SAMP algorithm, the estimated sparsity of the DBCSAMP algorithm is more accurate, and the reconstruction accuracy and operational efficiency of the DBCSAMP algorithm are greatly improved.
With the rapid growth of medical image data, it has become a current research hotspot that how to realize the large amounts of the real-time upload and storage of medical images with limited network bandwidth and storage space. However, currently, medical image compression technology cannot perform joint optimization of rate (the degree of compression) and distortion (reconstruction effect). Therefore, this study proposed a medical image compression algorithm based on a variational autoencoder. This algorithm takes rate and distortion as the common optimization goal and uses the residual network module to directly transmit information, which alleviates the contradiction between improving the degree of compression and optimizing the reconstruction effect. At the same time, the algorithm also reduces image loss in the medical image compression process by adding the residual network. The experimental results show that, compared with the traditional medical image compression algorithm and the deep learning compression algorithm, the algorithm in this study has smaller distortion, better reconstruction effect, and can obtain higher quality medical images at the same compression rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.