Endogenous neurosteroids have rapid actions on ion channels, particularly GABA(A) receptors, which are potentiated by nanomolar concentrations of 3alpha-hydroxypregnane neurosteroids. Previous evidence suggests that 3beta-hydroxypregnane steroids may competitively antagonize potentiation induced by their 3alpha diastereomers. Because of the potential importance of antagonists as experimental and clinical tools, we characterized the functional effect of 3beta-hydroxysteroids. Although 3beta-hydroxysteroids reduced the potentiation induced by 3alpha-hydroxysteroids, 3beta-hydroxysteroids acted noncompetitively with respect to potentiating steroids and inhibited the largest degrees of potentiation most effectively. Potentiation by high concentrations of barbiturates was also reduced by 3beta-hydroxysteroids. 3beta-Hydroxysteroids are also direct, noncompetitive GABA(A) receptor antagonists. 3beta-Hydroxysteroids coapplied with GABA significantly inhibited responses to > or =15 microm GABA. The profile of block was similar to that exhibited by sulfated steroids, known blockers of GABA(A) receptors. This direct, noncompetitive effect of 3beta-hydroxysteroids was sufficient to account for the apparent antagonism of potentiating steroids. Mutated receptors exhibiting decreased sensitivity to sulfated steroid block were insensitive to both the direct effects of 3beta-hydroxysteroids on GABA(A) responses and the reduction of potentiating steroid effects. At concentrations that had little effect on GABAergic synaptic currents, 3beta-hydroxysteroids and low concentrations of sulfated steroids significantly reversed the potentiation of synaptic currents induced by 3alpha-hydroxysteroids. We conclude that 3beta-hydroxypregnane steroids are not direct antagonists of potentiating steroids but rather are noncompetitive, likely state-dependent, blockers of GABA(A) receptors. Nevertheless, these steroids may be useful functional blockers of potentiating steroids when used at concentrations that do not affect baseline neurotransmission.
Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABAA-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl- currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABAA-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABAA-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABAA-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABAA-receptor, mood changes, and cognitive functions.
That 3alpha-hydroxy-5alpha/beta-pregnane steroids (GABA steroids) have modulatory effects on the GABA-A receptor is well known. In behavioral studies in animals high exogenous dosages give concentrations not usually reached in the brain under physiological conditions. Animal and human studies show that GABA-A receptor-positive modulators like barbiturates, benzodiazepines, alcohol, and allopregnanolone have a bimodal effect. In pharmacological concentrations they are CNS depressants, anesthetic, antiepileptic, and anxiolytic. In low dosages and concentrations, reached endogenously, they can induce adverse emotional reactions in up to 20% of individuals. GABA steroids can also induce tolerance to themselves and similar substances, and rebound occurs at withdrawal. Menstrual cycle-linked disorders can be understood by the concept that they are caused by the action of endogenously produced GABA-steroids through three mechanisms: (a) direct action, (b) tolerance induction, and (c) withdrawal effect. Examples of symptoms and disorders caused by the direct action of GABA steroids are sedation, memory and learning disturbance, clumsiness, increased appetite, worsening of petit mal epilepsy, negative mood as tension, irritability and depression during hormone treatments, and the premenstrual dysphoric disorder (PMDD). A continuous exposure to GABA steroids causes tolerance, and women with PMDD are less sensitive to GABA-A modulators. A malfunctioning GABA-A receptor system is related to stress sensitivity, concentration difficulties, loss of impulse control, irritability, anxiety, and depression. An example of withdrawal effect is "catamenial epilepsy," when seizures increase during menstruation after the withdrawal of GABA steroids. Similar phenomena occur at stress since the adrenals produce GABA steroids during stress.
Premenstrual syndrome (PMS) is a menstrual cycle-linked condition with both mental and physical symptoms. Most women of fertile age experience cyclical changes but consider them normal and not requiring treatment. Up to 30% of women feel a need for treatment. The aetiology is still unclear, but sex steroids produced by the corpus luteum of the ovary are thought to be symptom provoking, as the cyclicity disappears in anovulatory cycles when a corpus luteum is not formed. Progestogens and progesterone together with estrogen are able to induce similar symptoms as seen in PMS. Symptom severity is sensitive to the dosage of estrogen. The response systems within the brain known to be involved in PMS symptoms are the serotonin and GABA systems. Progesterone metabolites, especially allopregnanolone, are neuroactive, acting via the GABA system in the brain. Allopregnanolone has similar effects as benzodiazepines, barbiturates and alcohol; all these substances are known to induce adverse mood effects at low dosages in humans and animals. SSRIs and substances inhibiting ovulation, such as gonadotrophin-releasing hormone (GnRH) agonists, have proven to be effective treatments. To avoid adverse effects when high dosages of GnRH agonists are used, add-back hormone replacement therapy is recommended. Spironolactone also has a beneficial effect, although not as much as SSRIs and GnRH agonists.
Although neurosteroids have rapid effects on GABA A receptors, study of steroid actions at GABA receptors has been hampered by a lack of pharmacological antagonists. In this study, we report the synthesis and characterization of a steroid analog, (3␣,5␣)-17-phenylandrost-16-en-3-ol (17PA), that selectively antagonized neurosteroid potentiation of GABA responses. We examined 17PA using the ␣12␥2 subunit combination expressed in Xenopus laevis oocytes. 17PA had little or no effect on baseline GABA responses but antagonized both the response augmentation and the direct gating of GABA receptors by 5␣-reduced potentiating steroids. The effect was selective for 5␣-reduced potentiating steroids; 5-reduced potentiators were only weakly affected. Likewise, 17PA did not affect barbiturate and benzodiazepine potentiation. 17PA acted primarily by shifting the concentration response for steroid potentiation to the right, suggesting the possibility of a competitive component to the antagonism. 17PA also antagonized 5␣-reduced steroid potentiation and gating in hippocampal neurons and inhibited anesthetic actions in X. laevis tadpoles. Analogous to benzodiazepine site antagonists, the development of neurosteroid antagonists may help clarify the role of GABA-potentiating neurosteroids in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.