Fritillariae Thunbergii Bulbus (FTB) has been widely used as an antitussive herb for thousands of years in China. However, FTB’s traditional uses, chemical compounds and pharmacological activities have not been systematically reviewed. This study aimed to review its traditional uses, phytochemistry, pharmacodynamics, pharmacokinetics and toxicity. We searched the Encyclopedia of Traditional Chinese Medicine to explore the historical records which indicate that it acts to clear heat, resolve phlegm, relieve cough, remove toxicity and disperse abscesses and nodules. We searched 11 databases to identify potential phytochemical or pharmacological studies. Characteristics of its chemical constituents, pharmacological effects, pharmacokinetic and toxicity were descriptively summarized. A total of 9706 studies were identified and 83 of them were included. As a result, 134 chemical constituents were identified, including 26 alkaloids, 29 compounds found in essential oils, 13 diterpenoids, two carbohydrates, two sterols, 18 amino acids, six nucleosides, four nucleobases, four fatty acids, three lignans, and 27 elements. Thirteen pharmacological effects of FTB were identified, including anti-cancer, tracheobronchial relaxation, antitussive, expectorant, anti-muscarinic, anti-inflammation, anti-thyroid, regulation of blood rheology, antiulcer, anti-diarrhea, pain suppression, antioxidation and neuroprotection. These pharmacological activities may be mainly attributed to the alkaloids in FTB. Further phytochemical, pharmacological and network pharmacological studies are recommended.
Water purification and water desalination via membrane technology are generally deemed as reliable supplementaries for abundant potable water. Electrospun nanofiber-based membranes (ENMs), benefitting from characteristics such as a higher specific surface area, higher porosity, lower thickness, and possession of attracted broad attention, has allowed it to evolve into a promising candidate rapidly. Here, great attention is placed on the current status of ENMs with two categories according to the roles of electrospun nanofiber layers: (i) nanofiber layer serving as a selective layer, (ii) nanofiber layer serving as supporting substrate. For the nanofiber layer’s role as a selective layer, this work presents the structures and properties of conventional ENMs and mixed matrix ENMs. Fabricating parameters and adjusting approaches such as polymer and cosolvent, inorganic and organic incorporation and surface modification are demonstrated in detail. It is crucial to have a matched selective layer for nanofiber layers acting as a supporting layer. The various selective layers fabricated on the nanofiber layer are put forward in this paper. The fabrication approaches include inorganic deposition, polymer coating, and interfacial polymerization. Lastly, future perspectives and the main challenges in the field concerning the use of ENMs for water treatment are discussed. It is expected that the progress of ENMs will promote the prosperity and utilization of various industries such as water treatment, environmental protection, healthcare, and energy storage.
AimsObesity is a global, public health issue that causes or exacerbates serious medical disorders. Chinese herbal therapies have become one of the most popular alternatives due to intolerances of current anti-obesity treatments. The RCM-107 formula (granule) is modified from our previous studied RCM-104 formula, which has demonstrated significant effects on weight reduction in randomized clinical trials. Up to date, there is no published scientific evidence to evaluate the effect of this formula on the weight-loss target pancreatic lipase and therefore, the aim of this study is to investigate the inhibitory effect of RCM-107 and respective individual ingredient on the pancreatic lipase activities.Main methodsFluorometric based enzymatic assays, high-performance thin-layer chromatography (HPTLC) profiling and in silico molecular docking techniques were used to investigate the lipase inhibitory effects of the RCM-107 herbal formula and its respective individual herbs.Principle findingsThe results demonstrated the potent lipase suppressing effect of the RCM-107 formula. The majority of the ingredients from this formula also showed pancreatic lipase inhibitory activities. The presence of the known weight-loss compounds such as (-)-epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG), (-)-epicatechin (EC), rutin, crocin and caffeine were identified in the RCM-107 and related single herbs using HPTLC profiling approaches. In addition, EGCG, EC and the known lipase antagonist orlistat acted on the same site. These compounds form hydrogen bonds with corresponding residues HIS152, ASP80 and GLY77, which can be considered as markers of important areas in the ligand-binding site. This may explain the details of their roles in inhibiting pancreatic lipase activities.ConclusionOur data has provided new knowledge to the mechanistic properties of the RCM-107 formula and its respective individual herbal ingredients for weight loss, in terms of reducing lipid absorption via the inhibition of pancreatic lipase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.