Nano-structured superhard coatings represent the state-of-the-art in the rapidly increasing worldwide market for protective coatings. In this study, the combination of nano-composite and nanomultilayered structures into the same coating was attempted. Nano-multilayered coatings of TiN/TiSiN and CrN/CrSiN were deposited on tool steel substrates by closed-magnetic-field unbalanced DC magnetron sputter ion plating. The coating structures were characterized using X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Mechanical characterizations were performed including nanohardness measurement, progressively-increasing-load scratch test, and wear test. TiN/TiSiN coatings have a nano-hardness of 40.2 GPa, whereas CrN/CrSiN coatings have a hardness of 30.9 GPa. TiN/TiSiN coatings also showed a higher critical failure force and scratch fracture toughness as well as better wear resistance and lower acoustic emission signal, indicating less total damage to the coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.