Porcine reproductive and respiratory syndrome virus (PRRSV) infection appears to elicit a weak innate immune response suppressing type 1 interferon (IFN) production. Recent studies have revealed that several nonstructural proteins encoded by the PRRSV genome independently antagonize the type 1 IFN system. The present study sought to identify the structural proteins that possess the immune evasion properties in immortalized porcine alveolar macrophages (PAM). Each structural protein gene was stably expressed in a porcine monocyte-derived macrophage cell line, PAM-pCD163, and tested for its potential to inhibit IFN-β induction. We then focused on the nucleocapsid (N) protein, which has a strong inhibitory effect on dsRNA-induced IFN-β production. Upon dsRNA stimulation, IFN-β production was shown to decrease proportionally with increasing levels of N expression. Furthermore, the PRRSV N protein was found to down-regulate IFN-dependent gene production by dsRNA. Taken together, these results indicate the ability of N to modulate the dsRNA-mediated IFN induction pathways. In addition, the N protein significantly interfered with dsRNA-induced phosphorylation and nuclear translocation of IRF3. Our data suggest that the PRRSV N protein is a responsible component, independent of other nonstructural elements, for evading the IFN response by antagonizing IRF3 activation.
During October 2020–January 2021, we isolated a total of 67 highly pathogenic avian influenza (HPAI) H5N8 viruses from wild birds and outbreaks in poultry in South Korea. We sequenced the isolates and performed phylogenetic analysis of complete genome sequences to determine the origin, evolution, and spread patterns of these viruses. Phylogenetic analysis of the hemagglutinin (HA) gene showed that all the isolates belong to H5 clade 2.3.4.4 subgroup B (2.3.4.4b) and form two distinct genetic clusters, G1 and G2. The cluster G1 was closely related to the 2.3.4.4b H5N8 HPAI viruses detected in Europe in early 2020, while the cluster G2 had a close genetic relationship with the 2.3.4.4b H5N8 viruses that circulated in Europe in late 2020. A total of seven distinct genotypes were identified, including five novel reassortants carrying internal genes of low pathogenic avian influenza viruses. Our Bayesian discrete trait phylodynamic analysis between host types suggests that the viruses initially disseminated from migratory waterfowl to domestic duck farms in South Korea. Subsequently, domestic duck farms most likely contributed to the transmission of HPAI viruses to chicken and minor poultry farms, highlighting the need for enhanced, high levels of biosecurity measures at domestic duck farms to effectively prevent the introduction and spread of HPAI.
High pathogenicity H5N1 avian influenza viruses pose a threat to both animal and human health worldwide. In late 2020, outbreaks of H5 high pathogenicity avian influenza viruses belonging to clade 2.3.4.4b emerged in Europe, following on from outbreaks in East Asia in earlier years. However, very recent studies show that clade 2.3.4.4b H5N1, rather than 2.3.4.4b H5N8, has become predominant in wild birds and has infected poultry in several countries. In this study, we describe isolation of a novel H5N1 virus from a captured mandarin duck in South Korea, and another H5N1 virus from a quail farm. We performed genetic analysis of these two viruses to identify their origin and to determine their relationship with the clade 2.3.4.4b H5N1 viruses currently circulating in Europe. Based on our results, it is presumed that the novel H5N1 virus isolated in Korea originated from an unknown reassortant between clade 2.3.4.4b H5N8 viruses circulating from 2020 and other Eurasian viruses, with additional reassortment of genes and point mutations that discriminate them from the recently reported H5N1 virus in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.