For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as 2 1296 for spin system and 3 144 for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.
The quantum many-body problems are important for condensed matter physics, however solving the problems are challenging because the Hilbert space grows exponentially with the size of the problem. The recently developed deep learning methods provide a promising new route to solve long-standing quantum many-body problems. We report that a deep learning based simulation can achieve solutions with competitive precision for the spin $J1$-$J2$ model and fermionic $t$-$J$ model, on rectangular lattices within periodic boundary conditions. The optimizations of the deep neural networks are performed on the heterogeneous platforms, such as the new generation Sunway supercomputer and the multi graphical-processing-unit clusters. Both high scalability and high performance are achieved within an AI-HPC hybrid framework. The accomplishment of this work opens the door to simulate spin and fermionic lattice models with state-of-the-art lattice size and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.