Traffic congestion is a thorny issue to many large and medium-sized cities, posing a serious threat to sustainable urban development. Recently, intelligent traffic system (ITS) has emerged as an effective tool to mitigate urban congestion. The key to the ITS lies in the accurate forecast of traffic flow. However, the existing forecast methods of traffic flow cannot adapt to the stochasticity and sheer length of traffic flow time series. To solve the problem, this paper relies on deep learning (DL) to forecast traffic flow through time series analysis. The authors developed a traffic flow forecast model based on the long shortterm memory (LSTM) network. The proposed model was compared with two classic forecast models, namely, the autoregressive integrated moving average (ARIMA) model and the backpropagation neural network (BPNN) model, through long-term traffic flow forecast experiments, using an actual traffic flow time series from OpenITS. The experimental results show that the proposed LSTM network outperformed the classic models in prediction accuracy. Our research discloses the dynamic evolution law of traffic flow, and facilitates the decision-making of traffic management. INDEX TERMS Traffic flow forecast, time series analysis, deep learning (DL), long short-term memory (LSTM).
Exploring the complicated relationships underlying the clinical information is essential for the diagnosis and treatment of the Coronavirus Disease 2019 (COVID-19). Currently, few approaches are mature enough to show operational impact. Based on electronic medical records (EMRs) of 570 COVID-19 inpatients, we proposed an analysis model of diagnosis and treatment for COVID-19 based on the machine learning algorithms and complex networks. Introducing the medical information fusion, we constructed the heterogeneous information network to discover the complex relationships among the syndromes, symptoms, and medicines. We generated the numerical symptom (medicine) embeddings and divided them into seven communities (syndromes) using the combination of Skip-Gram model and Spectral Clustering (SC) algorithm. After analyzing the symptoms and medicine networks, we identified the key factors using six evaluation metrics of node centrality. The experimental results indicate that the proposed analysis model is capable of discovering the critical symptoms and symptom distribution for diagnosis; the key medicines and medicine combinations for treatment. Based on the latest COVID-19 clinical guidelines, this model could result in the higher accuracy results than the other representative clustering algorithms. Furthermore, the proposed model is able to provide tremendously valuable guidance and help the physicians to combat the COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.