BitterX is an open-access tool aimed at providing a platform for identifying human bitter taste receptors, TAS2Rs, for small molecules. It predicts TAS2Rs from the molecular structures of arbitrary chemicals by integrating two individual functionalities: bitterant verification and TAS2R recognition. Using BitterX, several novel bitterants and their receptors were predicted and experimentally validated in the study. Therefore, BitterX may be an effective method for deciphering bitter taste coding and could be a useful tool for both basic bitter research in academia and new bitterant discoveries in the industry.
Bladder cancer (BC) is the ninth most common malignancy throughout the world. The molecular mechanisms of this disease remain largely unclear. The glycolytic enzyme enolase 1 (ENO1) has been shown to regulate the development of various cancers. However, the significance of ENO1 in BC is underdetermined. In this study, we found that ENO1 was highly expressed in BC tissues and cells. High expression of ENO1 was associated with the poor survival of BC patients. Using lentivirus-mediated knockdown and over-expression, we revealed that ENO1 was critical for the growth and proliferation of BC cells. ENO1 over-expression also promoted the proliferation of SV-HUC-1 cells. At the molecular level, the cell cycle and apoptosis related genes were regulated by ENO1. β-catenin expression was positively regulated by ENO1. Furthermore, ectopic expression of β-catenin reversed the effect of ENO1 knockdown on T24 cell proliferation and growth. Opposite results were observed in β-catenin knockdown T24 cells. Our findings suggested that ENO1 functioned as an oncogene in BC through regulating cell cycle, apoptosis and β-catenin. Targeting ENO1/β-catenin cascade may benefit for BC patients.
The finely tuned bitter taste sensing in humans is orchestrated by a group of 25 bitter taste receptors (TAS2Rs), which belong to the G-protein-coupled receptor superfamily. TAS2Rs are expressed in the specialized taste bud cells of the gustatory system and perceive a plethora of bitter substances with versatile structures. To date, more than one hundred bitter ligands have been matched with their cognate receptors, but the understanding of the molecular mechanisms of TAS2Rs remains limited. Additionally, the extraoral expression of TAS2R genes was found in the gastrointestinal tract and respiratory system, which suggests other important physiological functions for TAS2Rs. To gain insight into the physiological functions of TAS2Rs, we established a heterologous expression system and characterized the response of 24 TAS2Rs against a library of potential bitter compounds. Among these bitter compounds of interest, 18 bitter compounds activated 16 TAS2Rs, representing 42 tastant-receptor pairs. We then calculated 14 descriptor properties for the 18 positive compounds. By comparison with 102 previously annotated bitter compounds in the database, we discovered common descriptor properties that may contribute to the discovery of additional bitter ligands and further expand the known molecular receptive ranges of human TAS2Rs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.