Charged domain walls in ferroelectrics exhibit a quasi-two-dimensional conduction path coupled to the surrounding polarization. They have been proposed for use as non-volatile memory with non-destructive operation and ultralow energy consumption. Yet the evolution of domain walls during polarization switching makes it challenging to control their location and conductance precisely, a prerequisite for controlled read-write schemes and for integration in scalable memory devices. Here, we explore and reversibly switch the polarization of square BiFeO nanoislands in a self-assembled array. Each island confines cross-shaped, charged domain walls in a centre-type domain. Electrostatic and geometric boundary conditions induce two stable domain configurations: centre-convergent and centre-divergent. We switch the polarization deterministically back and forth between these two states, which alters the domain wall conductance by three orders of magnitude, while the position of the domain wall remains static because of its confinement within the BiFeO islands.
Water scarcity has become an increasingly complex challenge with the global population growth, economic expansion, and climate changes, highlighting the demand for developing advanced water treatment technologies that can provide...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.