Recent studies showed substantial evidence of dynamic clustering and phase separation in active particle systems, but the role of anisotropic interaction between the particles has not been addressed yet. Here we investigate the phase separation of active particles that experience an anisotropic Janus interaction with tunable strength in two dimensional space by using Langevin dynamics simulations. Interestingly, we find that phase separation shows a re-entrance behavior with variation of the Janus interaction strength: while small Janus interaction can enhance the formation of living clusters and phase separation, large Janus interaction would destroy the large cluster. We explain this nontrivial phenomenon via the competition between the self-propulsion and the short-ranged Janus interaction: while self-propulsion can lead to clustering of the active particles, the Janus interaction favors the formation of states with attractive sides close to each other and repulsive sides staying apart.
Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of reported CDCs are found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered on a substrate. Active moving, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplet, rotating bubble, CDC oscillation, array of collective rotation, as well as interesting transitions such as chirality transition, structure transition and state reentrance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.