Aim: Lemon peel, a traditional Chinese medicine, was tested in this study for its novel application in inhibiting cellular oxidative stress, and the effect of lemon peel extract (LPE) on protecting H9c2 rat heart cells from oxidative stress was investigated. Methods: The scavenging effects of LPE on 1,1-diphenyl-2-picryhydrazyl (DPPH) and 2,2'azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) free radicals were measured in extracellular experiments. The 3-(4,5-dimethyl-2-thiazolinyl)-2,5-diphenyl-2-h-tetrazolylammonium bromide (MTT) assay was used to detect the cell survival rate. The cell supernatant and intracellular oxidation-related indicators were detected by a kit, and the mRNA expression in H9c2 cells was detected by quantitative polymerase chain reaction (qPCR). The chemical substances of LPE were analyzed by high-performance liquid chromatography (HPLC). Results: The results showed that LPE exhibited better DPPH and ABTS free radical scavenging abilities than vitamin C. Compared with the cells in the normal state (control group), the cell survival rate in the model group decreased, and the level of lactate dehydrogenase (LDH) increased, the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) decreased, and the content of malondialdehyde (MDA) increased. Compared with the control group, the expression of Bcl-2-related X protein (Bax), caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in the model group was increased, and the expression of B-cell lymphoma-2 (Bcl-2) was reduced. Compared with the model group, LPE treatment improved the cell survival rate, reduced the levels of LDH and MDA, increased the levels of SOD, CAT, and GSH, downregulated the expression of Bax, caspase-3, Nrf2 and HO-1, and upregulated the expression of Bcl-2. The composition analysis showed that LPE contained catechin, rutin, naringin, quercetin, and hesperidin. Conclusion:The results indicated that LPE could protect H9c2 cells from oxidative stress through five active components. LPE has the potential to be developed into natural medicine or health food for the inhibition of cell oxidative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.