We herein report the construction of a novel azo-linked conjugated microporous polymers (Ag@AzoTPE-CMP), which possesses permanent porous structure and Ag+ loading up of 7.62% in the skeleton as effective sorption sites. Ag@AzoTPE-CMP shows considerable adsorption capacity of iodine of 202 wt% in iodine vapor at 350 K. In addition, Ag@AzoTPE-CMP can effectively remove heavy ions from ethanol-water solution.
A series of conjugated microporous polymers containing thiophene-moieties (SCMP-COOH@1-3) was obtained by a homo-coupling polymerization reaction. Then the SCMP-COOH@1-3 were directly pyrolyzed without any templates to synthesize the porous carbon networks, named as SCMP-600@1, 2 and 3. SCMP-600@1-3 possess moderate BET surface area of 362–642 m2 g−1, have a permanent porous structure and plenty of sulfur and oxygen units in the skeletons as effective sorption sites, and display a high absorption performance for iodine vapour with an uptake up to 204 wt.%. In addition, SCMP-COOH@1-3 polymers can be used to effectively detect mercury ion from ethanol-water solution. Interestingly, under the same concentration of Hg2+ conditions, the detection ability of mercury ion of porous materials increased with the increase of the pore volumes and the specific surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.