Studies of Natural Killer (NK) cell cytotoxicity have mainly focused on the balance of activating and inhibitory receptors, signaling transduction, calcium influx, formation of immune synapse, and cytolytic degranulation. However, little is known about the chromatin state of NK cells and the impact of its changes during target recognition. In this study, we investigate the contribution of chromatin state dynamics during NK cell activation by comprehensively analyzing a set of microarray data and two sets of Chromatin Immunoprecipitation-Sequencing (ChIP-seq) data. We find that the expression of several histone demethylases and methyltransferases was influenced upon stimulation. Furthermore, we notice that a series of genes, including PI3KCA, NFATC1and TNFSF9, which play important roles during NK cell activation, were at ‘poised’ state prior to activation, and that modifications of H3K4me3 and H3K27me3 on these promotors were sensitive to stimulation with Phorbol Myristate Acetate (PMA) and Ionomycin (Iono) in the NK92MI cell line. Finally, we demonstrate that a series of small molecule inhibitors, which are specific to H3K4 and H3K27 modification, enhance degranulation or the expression levels of IFN-γ and TNF-α. Our results suggest that the histone modification state has a profound impact on NK cell activation, and provide novel insights into the regulation of NK cellular cytotoxicity and immunoregulatory function by chromatin state dynamics.
The RIG-I–like receptor (RLR) signaling pathway is pivotal for innate immunity against invading viruses, and dysregulation of this molecular cascade has been linked to various diseases. Here, we identified dimethylarginine dimethylaminohydrolase 2 (DDAH2) as a potent regulator of the RLR-mediated antiviral response in human and mouse. Overexpression of DDAH2 attenuated RLR signaling, whereas loss of DDAH2 function enhanced RLR signaling and suppressed viral replication ex vivo and in mice. Upon viral infection, DDAH2 relocated to mitochondria, where it induced the production of nitric oxide (NO) and the activation of dynamin-related protein 1 (Drp1), which promoted mitochondrial fission and blocked the activation of innate immune responses mediated by mitochondrial antiviral signaling (MAVS). TANK-binding kinase 1 (TBK1), a kinase downstream of MAVS, inhibited DDAH2 by phosphorylating DDAH2 at multiple sites. Our study thus identifies a reciprocal inhibitory loop between the DDAH2-NO cascade and the RLR signaling pathway that fine-tunes the antiviral immune response.
IntroductionBladder cancer is the most common urinary tract malignancy, and 90% of bladder tumors are urothelial cell carcinomas. Ferroptosis is a new form of cell death discovered in recent years, which is an iron-dependent form of cell death characterized by the lethal intracellular accumulation of lipid-based reactive oxygen species. Ferroptosis is considered to be a double-edged sword for cancer and cancer therapy.Materials and MethodsIn the current study, expression profiles of bladder cancer (BLCA) specimens were obtained from The Cancer Genome Atlas (TCGA) RNA-Seq database. Ferroptosis-related genes were downloaded from the FerrDb website. The ferroptosis-related differentially expressed genes (DEGs) which were related to overall survival (OS) were first identified. The least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression methods were utilized to develop a ferroptosis-related prognostic model (FRPM). In addition, a nomogram model based on FRPM and clinicopathological features was successfully constructed and validated. In addition, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and single-sample gene set enrichment analysis (ssGSEA) methods were utilized in this study in order to compare the DEGs between the high-risk and low-risk groups. This study also adopted RT-qPCR, CCK-8 assay, and scratch assay methods to perform experimental verification processes.Results and DiscussionA 7-gene FRPM was constructed in this research investigation in order to stratify the patients into two groups according to their risk scores. The results of this study’s survival analysis and time-dependent receiver operating characteristic (ROC) analysis demonstrated that the model had achieved a stable performance level. This multivariate Cox regression results revealed that the FRPM was an independent prognostic predictor for the OS of BLCA patients and the results were displayed using a nomogram. In addition, the ROC analysis, concordance index (C-index), calibration plots, and decision curve analysis (DCA) curves further indicated that this study’s nomogram method enabled valuable prediction results. The functional enrichment analysis results suggested that the DEGs between the high- and low-risk groups played vital roles in the progression of the ferroptosis. Also, the ssGSEA indicated that the immune status was different between the two groups. This study found that the RT-qPCR results had confirmed the differential expressions of DEGs in the tissue samples, and the CCK-8 assay and scratch assay results confirmed the promoting effects of SCD on the proliferation and migration of tumor cells.ConclusionsThis study defined a novel prognostic model of seven ferroptosis-related genes, which proved to be independently associated with the OS of BLCA. A nomogram method was developed for the purpose of providing further insight into the accurate predictions of BLCA prognoses.
The raw files presented in this article have been submitted to the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi) under accession number GSE184127.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.