Smoke from wildfires is a growing health risk across the US. Understanding the spatial and temporal patterns of such exposure and its population health impacts requires separating smoke-driven pollutants from non-smoke pollutants and a long time series to quantify patterns and measure health impacts. We develop a parsimonious and accurate machine learning model of daily wildfire-driven PM 2.5 concentrations using a combination of ground, satellite, and reanalysis data sources that are easy to update. We apply our model across the contiguous US from 2006 to 2020, generating daily estimates of smoke PM 2.5 over a 10 km-by-10 km grid and use these data to characterize levels and trends in smoke PM 2.5 . Smoke contributions to daily PM 2.5 concentrations have increased by up to 5 μg/m 3 in the Western US over the last decade, reversing decades of policy-driven improvements in overall air quality, with concentrations growing fastest for higher income populations and predominantly Hispanic populations. The number of people in locations with at least 1 day of smoke PM 2.5 above 100 μg/m 3 per year has increased 27-fold over the last decade, including nearly 25 million people in 2020 alone. Our data set can bolster efforts to comprehensively understand the drivers and societal impacts of trends and extremes in wildfire smoke.
Abstract. Evaluating the influence of anthropogenic-emission changes on air quality requires accounting for the influence of meteorological variability. Statistical methods such as multiple linear regression (MLR) models with basic meteorological variables are often used to remove meteorological variability and estimate trends in measured pollutant concentrations attributable to emission changes. However, the ability of these widely used statistical approaches to correct for meteorological variability remains unknown, limiting their usefulness in the real-world policy evaluations. Here, we quantify the performance of MLR and other quantitative methods using simulations from a chemical transport model, GEOS-Chem, as a synthetic dataset. Focusing on the impacts of anthropogenic-emission changes in the US (2011 to 2017) and China (2013 to 2017) on PM2.5 and O3, we show that widely used regression methods do not perform well in correcting for meteorological variability and identifying long-term trends in ambient pollution related to changes in emissions. The estimation errors, characterized as the differences between meteorology-corrected trends and emission-driven trends under constant meteorology scenarios, can be reduced by 30 %–42 % using a random forest model that incorporates both local- and regional-scale meteorological features. We further design a correction method based on GEOS-Chem simulations with constant-emission input and quantify the degree to which anthropogenic emissions and meteorological influences are inseparable, due to their process-based interactions. We conclude by providing recommendations for evaluating the impacts of anthropogenic-emission changes on air quality using statistical approaches.
Understanding impacts of renewable energy on air quality and associated human exposures is essential for informing future policy. We estimate the impacts of U.S. wind power on air quality and pollution exposure disparities using hourly data from 2011 to 2017 and detailed atmospheric chemistry modeling. Wind power associated with renewable portfolio standards in 2014 resulted in $2.0 billion in health benefits from improved air quality. A total of 29% and 32% of these health benefits accrued to racial/ethnic minority and low-income populations respectively, below a 2021 target by the Biden administration that 40% of the overall benefits of future federal investments flow to disadvantaged communities. Wind power worsened exposure disparities among racial and income groups in some states but improved them in others. Health benefits could be up to $8.4 billion if displacement of fossil fuel generators prioritized those with higher health damages. However, strategies that maximize total health benefits would not mitigate pollution disparities, suggesting that more targeted measures are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.