Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.
The surface composition of PdCo alloy was tuned by the annealing atmosphere. By electrochemical etching Co atoms, the alloy with Pd-rich surfaces was rearranged with abundant high-index facets, which leads to an enhanced HER performance.
In this work we report the fabrication of cellulose-based humidity responsive material with antifungal activity. The quaternized cellulose (QC) derivatives with low degree of substitution (DS) values of 0.08-0.37 were synthesized in NaOH/urea aqueous solution. Water insoluble QC membranes (c-QCM) were prepared by casting from QC aqueous solutions, followed by crosslinking with glutaraldehyde. The c-QCMs were disintegrated in acid solutions, but were able to keep membrane shape in neutral and mild basic solutions with pH value of 7.2 and 9.7. The equilibrium water adsorption ratios of c-QCMs were in the range of 66-98%, depending on the DS values of quaternary ammonium groups and the pH value of the aqueous solutions. The antifungal activity of QC was evaluated and found that QC could effectively inhibit the reproduction of Rhizopus stolonifer, Aspergillus flavus and Penicillium digitatum, with minimum inhibitory concentration of 5, 10, and 7.5 mg/mL, respectively. The resistivity of the c-QCM changed for about 65-134 times corresponding to the change of environmental relative humidity from 20 to 99%; and the performance of c-QCM as a resistive-type humidity responsive material was consistent in the cycling of relative humidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.