Abstract-Location-based services have been widely adopted in many systems. Existing works employ a pull model or user-initiated model, where a user issues a query to a server which replies with location-aware answers. To provide users with instant replies, a push model or server-initiated model is becoming an inevitable computing model in the next-generation location-based services. In the push model, subscribers register spatio-textual subscriptions to capture their interests, and publishers post spatio-textual messages. This calls for a high-performance location-aware publish/subscribe system to deliver publishers' messages to relevant subscribers. In this paper, we address the research challenges that arise in designing a location-aware publish/subscribe system. We propose an R-tree based index by integrating textual descriptions into R-tree nodes. We devise efficient filtering algorithms and effective pruning techniques to achieve high performance. Our method can support both conjunctive queries and ranking queries. We discuss how to support dynamic updates efficiently. Experimental results show our method achieves high performance which can filter 500 messages in a second for 10 million subscriptions on a commodity computer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.